K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

a/Kẻ các đường cao BI, CJ của tam giác BDC, O là trực tâm tgiacs abc

Theo Thales có \(\frac{BH}{BM}=\frac{HO}{OD},\frac{HC}{CN}=\frac{HO}{OD}\RightarrowĐPCM\)

b/Có \(\frac{AE}{BE}=\frac{AD}{DO},\frac{AD}{DO}=\frac{AF}{CF}\RightarrowĐPCM\)

NV
6 tháng 11 2021

Tính chất cơ bản của tam giác với 3 đường cao: \(\Delta AEF\sim\Delta ABC\) (bài toán quen thuộc chắc em tự c/m được)

\(\Rightarrow AF.AB=AE.AC\)

Trong tam giác vuông ABN với đường cao NF:

\(AN^2=AF.AB\)

Trong tam giác vuông ACM:

\(AM^2=AE.AC\)

\(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\)

b. Hệ thức lượng: \(BN^2=BF.AB\) ; \(CM^2=CE.AC\)

\(\Delta ABD\sim\Delta CBF\) (2 tam giác vuông chung góc B)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BD}{BF}\Rightarrow BF.AB=BD.BC\) (1)

Hoàn toàn tương tư, \(\Delta ADC\sim\Delta BEC\Rightarrow CE.AC=CD.BC\) (2)

Cộng vế (1) và (2) \(\Rightarrow BF.AB+CE.AC=\left(BD+CD\right)BC=BC^2\)

\(\Rightarrow BN^2+CM^2=BC^2\)

\(\Rightarrow BN.CM\le\dfrac{1}{2}\left(BN^2+CM^2\right)=\dfrac{1}{2}BC^2=2a^2\)

Dấu "=" xảy ra khi tam giác cân tại A

NV
6 tháng 11 2021

undefined

a) Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\)

\(\widehat{AFH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=EF(hai đường chéo)

b) Xét ΔMEB và ΔMCF có 

\(\widehat{MEB}=\widehat{MCF}\left(=\widehat{AEF}\right)\)

\(\widehat{M}\) chung

Do đó: ΔMEB\(\sim\)ΔMCF(g-g)

Suy ra: \(\dfrac{ME}{MC}=\dfrac{MB}{MF}\)

hay \(ME\cdot MF=MB\cdot MC\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)(hai góc tương ứng)