Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Kẻ các đường cao BI, CJ của tam giác BDC, O là trực tâm tgiacs abc
Theo Thales có \(\frac{BH}{BM}=\frac{HO}{OD},\frac{HC}{CN}=\frac{HO}{OD}\RightarrowĐPCM\)
b/Có \(\frac{AE}{BE}=\frac{AD}{DO},\frac{AD}{DO}=\frac{AF}{CF}\RightarrowĐPCM\)
Bốn điểm A,B,D,C cùng nằm trên (O) theo thứ tự đó => ^BAC + ^BDC = 1800
Vì PM // AB, PN // AC nên ^MPN = ^BAC. Do đó ^MPN + ^BDC = 1800 => Tứ giác PMDN nội tiếp
Lúc này, điểm R nằm trên đường tròn ngoại tiếp tứ giác PMDN
=> ^DRP = ^DNP = ^DCA (Bởi PN // AC) = ^DRA. Ta thấy A,P nằm cùng phía so với DR nên RP trùng RA
Hay A,P,R thẳng hàng. Dễ thấy tứ giác AEPF là hình bình hành, suy ra AP chia đôi EF
Vậy nên RP cũng chia đôi EF (đpcm).
Bạn tham khảo bài tại link :
https://olm.vn/hoi-dap/detail/244883081409.html
hoặc :
Câu hỏi của Vũ Nguyễn Phương Thảo - Toán lớp 8 - Học trực tuyến OLM
Hok tốt