K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNQ có

NE,MF là các đường cao

NE cắt MF tại H

Do đó: H là trực tâm của ΔMNQ

=>QH\(\perp\)MN tại D

8 tháng 8

Xét `ΔMQN` có: 

Đường cao `NE` và `MF` cắt nhau tại H

`=> H` là trực tâm của `ΔMQN`

`=> QD` là đường cao của `ΔMQN` (đi qua H)

`=> QH  MN` tại `D`

a: góc MDN=góc MHN=90 độ

=>MDHN nội tiếp

b: góc EMD=góc MNE

góc HMD=góc HND

mà góc MNE=góc HND

nên góc EMD=góc HMD

=>MD là phân giác của góc HME

 

21 tháng 10 2021

\(QH=\sqrt{4\cdot12}=4\sqrt{3}\left(cm\right)\)

\(QM=\sqrt{\left(4\sqrt{3}\right)^2+4^2}=8\left(cm\right)\)

\(QN=\sqrt{16^2-8^2}=8\sqrt{3}\left(cm\right)\)

21 tháng 10 2021

\(QH=\sqrt{4\cdot12}=4\sqrt{3}\left(cm\right)\)

QM=8(cm)

\(QN=8\sqrt{3}\left(cm\right)\)