K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

a) ta có : 

KI vuông góc vs MN (gt),MNvuông góc vs MP (gt), IP' vuông góc vs MP(gt)

suy ra : tứ giác MKIP' là hình chữ nhật(đpcm)

b) ta có : MI = KP (tc hai đường chéo HCN)

suy ra : MF = FI (gt)

KF = P'F = 1/2KP' = 1/2 MF(tc)

vậy 3 đm K,F,P' thẳng hàng

c) ta có : 

KI vuông góc vs NM (gt) , mà MN vuông góc vs MP (gt)

suy ra : 

KI song song vs MP , có PI = IN (gt) 

suy ra : tam giác MNP có KI là ĐBH

suy ra IK bằng  1/2 MP (tc)

có : KI + MP' (hcn) , vậy suy ra : KI = MP' = P'P (tc),vậy MP' = P'P (tc)    (1)

có IP' = P'L (tc)    (2)

mà IL vuông góc vs MP (gt)     (3)

vậy từ (1),(2) và (3) suy ra : tứ giác MIPL là hinh thoi 

1 tháng 11 2019

A F E D B C M

Mình vẽ hình hơi xâu, bạn thông cảm nhé!

a) Xét từ giác ABMC  có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)

                                    + DA = DM (gt)

                                    + DB = DM(gt)

suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật

1 tháng 11 2019

Các câu còn lại bạn đầu có thể giải theo cách trên nhé! 

( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)

17 tháng 11 2019

a, tam giác ABC vuông tại C (gt)

=> góc ACB = 90 (đn)

có ME _|_ AC (gt) => góc MEC = 90 (đn)

MF _|_ BC (gt) => góc MFC  = 90 (đn)

xét tứ giác EMFC 

=> EMFC là hình chữ nhật (dấu hiệu)

=> CM = EF (tính chất)

b, M là trung điểm của AB (Gt)

=> CM là trung tuyến (đn/)

tam giác ABC vuông tại C (Gt)

=> CM = AM = AB/2 (đl)

xét tam giác AME và tam giác CME có : EM chung

góc MEA = góc MEC = 90 

=> tam giác AME = tam giác CME (ch-cgv)

=> AE = EC (đn)

E thuộc AC 

=> E là trung điểm của AC (đn)

c, có ME _|_ AC 

=> MD _|_ AC ; xét tứ giác ADCM 

=> ADCM là hình thoi (dấu hiệu)

16 tháng 12 2021

h

 

18 tháng 11 2019

https://coccoc.com/search?query=cho+tam+gi%C3%A1c+abc+vu%C3%B4ng+t%E1%BA%A1i+a+am+l%C3%A0+trung+tuy%E1%BA%BFn

#Theo link này nhoooo

25 tháng 11 2018

a) Xét tam giác QMN có :

A là trung điểm của MN

B là trung điểm của MQ

=) AB là đường trung bình của tam giác QMN

=) AB // MQ Và AB=\(\frac{1}{2}\)MQ (*)

Xét tam giác QPN có :

C là trung điểm của QP

D là trung điểm của NP

=) CD là đường trung bình của tam giác QPN

=) CD // QN Và CD=\(\frac{1}{2}\)QN (**)

Từ (*) và (**) =) Tứ giác ABCD là hình bình hành  (1)

Xét tam giác MQP có :

B là trung điểm của MQ

C là trung điểm của QP

=) BC là đường trung bình của tam giác MQP

=) BC // MP

Do MNPQ là hình thoi =) MP\(\perp\)NQ

Mà BC // MP và AB // NQ

=) BC\(\perp\)AB   (2)

Từ (1) và (2) =) ABCD là hình chữ nhật

b) Ta có : MQ=QP

Do B là trung điểm của MQ =) MB=BQ=\(\frac{MQ}{2}\)

Do C là trung điểm của QP =) QC=CP=\(\frac{QP}{2}\)

=) QB=QC

Do MNPQ là hình thoi =) QM là đường phân giác \(\widehat{MQP}\)

=) \(\widehat{MQN}\)=\(\widehat{NQP}\)=\(\frac{\widehat{MQP}}{2}\)

Xét tam giác QMN có:

MQ=MQ và \(\widehat{QMN}\)=600

=) QMN là tam giác đều

Xét tam giác MQN có :

NQ là đường trung tuyến=) NQ là đường phân giác của \(\widehat{MNQ}\)

=) \(\widehat{MNB}\)=\(\widehat{BNQ}\)=\(\frac{\widehat{MNQ}}{2}\)=\(\frac{60^0}{2}\)= 300

Xét tam giác QBN và tam giác QCN có :

QB=QC ( chứng minh trên )

\(\widehat{BQN}\)=\(\widehat{CQN}\) ( chứng minh trên )

QN là cạch chung

=) tam giác QBN = tam giác QCN (c-g-c)

=)\(\widehat{BNQ}\)=\(\widehat{QNC}\) =300 (2 góc tương ứng ) và BN=CN ( 2 cạch tương ứng )

=) Tam giác BNC là tam giác cân tại N (3)

Ta có : \(\widehat{BNQ}\)+\(\widehat{QNC}\)=\(\widehat{BNC}\)

       =) 300 +300 =\(\widehat{BNC}\)

      =) \(\widehat{BNC}\)=600  (4)

Từ (3) và (4) =) Tam giác BNC là tam giác đều

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MAa) CM: Tứ giác ABEC là hình thoi và tính số đo góc BECb) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?c) CM: Tứ giác ABEF là hình thang când) Điểm C có là trực tâm của tam...
Đọc tiếp

NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY

  • 1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MA

a) CM: Tứ giác ABEC là hình thoi và tính số đo góc BEC

b) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?

c) CM: Tứ giác ABEF là hình thang cân

d) Điểm C có là trực tâm của tam giác DBF không ? Giải thích?

  • 2. Cho tam giác ABC(AB<AC), đoạn AI là đường cao và ba điểm D,E,F theo thứ tự là trung điểm của các đoạn thẳng AB,AC,BC. 

a) CM: Tứ giác BDEF là hình bình hànhb) Điểm J là điểm dối xứng của điểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

b) Điểm J là điểm đối xứng của diểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?

c) Hai đường thẳng BE,DF cắt nhau tại K. CM : Hai tứ giác ADKE và KECF có diện tích bằng nhau

d) Tính diện tích tam giác ADE theo diện tích tam giác ABC

  • 3. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Gọi K là trung điểm của MC, E là điểm đối xứng của D qua K.

a) CM: Tứ giác ABDC là hình thoi

b) CM: Tứ giác AMCE là hình chữ nhật

c) AM và BE cắt nhau tại I. CM : I là trung điểm của BE

d) CM: AK,CI,EM đồng quy

  • 4. Cho hình chữ nhật ABCD(AB>AD), trên cạnh AD, BC lần lượt lấy các điểm M,N sao cho AM=CN.

a) CMR: BM song song với DN

b) Gọi O là trung điểm của BD. CMR: AC,BD,MN đồng quy tại O

c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CMR : PBQD là hinh thoi

d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CMR : AC vuông góc với CK.

  • 5. Cho tam giác ABC cân tại Acó M là trung điểm của cạnh BC . Gọi D là điểm đối xứng với A qua M.

a) CM : Tứ giác ABDC là hình thoi

b) Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. CM: Tứ giác ADBF là hình bình hành

c) Qua C vẽ đường thẳng song song với AD cắt tia BA tại điểm E. CM: Tứ giác BCEF là hình chữ nhật

d) Nối EM cắt AC tại N, kéo dài BN cắt EC tại I. CM: SIBC = 1/4 SBCEF

  • 6. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.

a) CM: Tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành

b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. CM: Tứ giác CHFK là hình chữ nhật và I là trung điểm của HK

c) CM: ba điểm E,H,K thẳng hàng

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

21 tháng 12 2016

A) Xét tam giác MDA và tam giác EDB có :
MD=DE( GT)

DA=DB( GT)

góc EDB=góc MDA ( góc đối đỉnh)

vậy tam giác MDA = tam giác EDB( C-G-C)

suy ra : DE=MA( hai canh tương ứng)

 chứng minh tương tự ta lại có : tam giác MDB= tam giác EDA 

suy ra : MB=AE( hai canh tương ứng)

mà ta lại có AM là đường trung tuyến ứng với cạnh huyền vậy AM=1/2BC=MB

vậy : MA=MB=AE=BE

suy ra : tứ giác AEBM là hình thoy

B) Xét tứ giác CMEA có :

MB song song với AE và bằng MB =AE ( theo phần a)

mà ta lại có : MC = MB

vậy AE song song với MC

AE=MC( chứng minh trên)

vậy tứ giác CMEA là HBH

 Mà I lại là trung điểm của đường chéo AM 

vậy I cũng là trung điểm của đường chéo CE

suy ra :  C,i.E thẳng hàng

C) tam giác ABC phải là tam giác vuông cân thì tứ giác AEBM mới là hình vuông 

 bở lẽ khi tam tam giác ABC vuuong cân thì ta sẽ có góc CBA = 45 độ

mà BA lại là đường phân giác của góc MBE ( theo phần a  tứ giác AEMB là hình thoi)

 nên góc MBE =45*2=90độ

mà phần a ta lại có  tứ giác AMBE là hình thoi 

vậy tứ giác AMBE là hình vuông

mình làm xong rồi nhớ mình nhé mình cảm ơn ^_^

câu a) bn ấy lm hơi dài nên mk có cách khác

c/m EBMA là hbh (2 đường chéo cắt tại trung điểm mỗi đường)

mà có AB vuông góc EM (t/c đối xứng)

vậy AEBM là hình thoi