K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHIK có IN là phân giác

nên HN/NK=HI/IK=HK/IK(1)

Xét ΔHIK có KM là phân giác

nên HM/MI=HK/KI(2)

Từ (1) và (2) suy ra HN/NK=HM/MI

=>MN//IK

=>ΔHMN\(\sim\)ΔHIK

b: Ta có: HN/HI=NK/IK

=>HN/10=NK/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{HN}{5}=\dfrac{NK}{4}=\dfrac{HN+NK}{5+4}=\dfrac{10}{9}\)

Do đó: HN=50/9(cm)

Xét ΔHIK có MN//IK

nên MN/IK=HN/HK

\(\Leftrightarrow MN=\dfrac{50}{9}:10\cdot8=\dfrac{40}{9}\left(cm\right)\)

13 tháng 12 2021

a: Xét tứ giác HGEN có 

HG//EN

HN//GE

Do đó: HGEN là hình bình hành

mà HE là tia phân giác

nên HGEN là hình thoi

a: Xét ΔHIK và ΔHNM có

HI/HN=HK/HM=5/2

góc H chung

=>ΔHIK đồng dạng với ΔHNM

b:

ΔHIK đồng dạng với ΔHNM

=>IK/NM=5/2

=>10/NM=5/2

=>NM=4cm

c: Xét ΔHIK và ΔHAI có

góc HIK=góc HAI(=góc HNM)

góc Hchung

=>ΔHIK đồng dạng với ΔHAI

a: Xét ΔAHI vuông tại H và ΔACH vuông tại H có

góc HAI chung

=>ΔAHI đồng dạng với ΔACH

Xét ΔAHI vuông tại Ivà ΔHCI vuông tại I có

góc HAI=góc CHI

=>ΔAHI đồng dạng với ΔHCI

b: Xet ΔIHC có IM/IH=IK/IC

nên MK//HC

=>MK vuông góc AH

Xet ΔAHK có

KM,HI là đường cao

KM cắt HI tại M

=>M là trực tâm

=>AM vuông góc HK tại N

=>MN là đường cao của ΔHMK

17 tháng 4 2023

Cs hình ko ạ 😅

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.Bài 6. Cho tứ giác ABCD có hai đường chéo cắt...
Đọc tiếp

Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

9
28 tháng 3 2020

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

28 tháng 3 2020

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

15 tháng 4 2020

điểm H,K,I ở chỗ nào vậy