Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
hay ΔABC vuông tại A
c:
Xét tứ giác APMQ có
\(\widehat{APM}=\widehat{AQM}=\widehat{PAQ}=90^0\)
Do đó: APMQ là hình chữ nhật
Suy ra: PQ=AM
hình bạn tự vẽ nha :
a.Ta có:
đường tròn đường kính
b.Từ câu a
Mà đều,
Do
đều
là hình thoi
a) Có nên 5 điểm A, P, M, H, Q cùng thuộc đường tròn đường kính AM.
b) Vì AH là đường cao của tam giác đều ABC nên .
Vì A, P, M, H, Q cùng nằm trên đường tròn tâm O nên OP = OH = OQ = OM và ; suy ra OPH và OQH là hai tam giác đều, do đó OQHP là hình thoi.
c) Gọi r là bán kính đường tròn ngoại tiếp đa giác APMHQ thì AM = 2r và OPH, OQH là hai tam giác đều cạnh r. Do đó
Do đó PQ ngắn nhất khi và chỉ khi M là trung điểm BC.