Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆BEA và ∆CDA, ta có:
BA = CA (gt)
\(\widehat{A}\)chung
AE = AD (gt)
Suy ra: ∆BEA = ∆CDA (c.g.c)
Vậy BE = CD (hai cạnh tương ứng)
b) ∆BEA = ∆CDA (chứng minh trên)
⇒\(\widehat{\text{B1}}=\widehat{\text{C1}}\);\(\widehat{\text{E1}}=\widehat{\text{D1}}\) (hai góc tương ứng)
\(\widehat{\text{E1}}+\widehat{\text{E2}}\)=180o (hai góc kề bù)
\(\widehat{\text{D1}}+\widehat{\text{D2}}\)=180o (hai góc kề bù)
Suy ra: \(\widehat{\text{E2}}=\widehat{\text{D2}}\)
AB = AC (gt)
⇒ AE + EC = AD + DB mà AE = AD (gt) => EC = DB
Xét ∆ODB và ∆OCE, ta có:
\(\widehat{\text{E2}}=\widehat{\text{D2}}\) (chứng minh trên)
DB = EC (chứng minh trên)
\(\widehat{\text{B1}}=\widehat{\text{C1}}\)(chứng minh trên)
Suy ra: ∆ODB = ∆OEC (g.c.g)
A B K C D E
a) Xét \(\Delta ABE\) và \(\Delta ACD\)
có: + AE=AD(gt)
+A: là góc chung
+AB=AC(do \(\Delta ABC\) cân tại A)
Vậy \(\Delta ABE\)=\(\Delta ACD\) (c.g.c)
=> BE=CD( 2 cạnh tương ứng)
b) Vì \(\Delta ABE\) =\(\Delta ACD\) (cmt)
nên: góc ABE=góc ACD( 2 góc tương ứng)
c) .\(\Delta KBC\) cân tại K
. Ta có: góc B = \(B_1+B_2\)
C=\(C_1=C_2\)
B=C(gt);\(B_1=C_1\) (cmt)
=> \(B_2=C_2\)
Do đó \(\Delta KBC\) cân tại K
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABE\) và \(ACD\) có:
\(AE=AD\left(gt\right)\)
\(AB=AC\left(gt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABE=\Delta ACD\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABE=\Delta ACD.\)
=> \(\widehat{AEB}=\widehat{ADC}\) (2 góc tương ứng).
=> \(\widehat{ABE}=\widehat{ACD}\) (2 góc tương ứng)
Hay \(\widehat{DBI}=\widehat{ECI}.\)
Ta có:
\(\left\{{}\begin{matrix}\widehat{ADC}+\widehat{BDC}=180^0\\\widehat{AEB}+\widehat{CEB}=180^0\end{matrix}\right.\) (các góc kề bù).
Mà \(\widehat{AEB}=\widehat{ADC}\left(cmt\right)\)
=> \(\widehat{BDC}=\widehat{CEB}.\)
Hay \(\widehat{BDI}=\widehat{CEI}.\)
Lại có:
\(\left\{{}\begin{matrix}AD+DB=AB\\AE+EC=AC\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\AD=AE\left(gt\right)\end{matrix}\right.\)
=> \(DB=EC.\)
Xét 2 \(\Delta\) \(IBD\) và \(ICE\) có:
\(\widehat{DBI}=\widehat{ECI}\left(cmt\right)\)
\(BD=EC\left(cmt\right)\)
\(\widehat{BDI}=\widehat{CEI}\left(cmt\right)\)
=> \(\Delta IBD=\Delta ICE\left(g-c-g\right)\left(đpcm\right).\)
Chúc bạn học tốt!
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a, Xét \(\Delta\)ABE và \(\Delta\)ACD cs :
AB = AC(gt)
^A - chung
AE = AD (gt)
=> \(\Delta\)ABE = \(\Delta\)ACD (c.g.c)
b) Từ \(\Delta\)ABE = \(\Delta\)ACD (câu a)
=> đpcm
A D E B C
a) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
\(AB=AC\left(gt\right)\)
\(\widehat{A}\)là góc chung
\(AD=DE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)( 2 cạnh tương ứng )
b) Đề sai, điểm M đâu???
c) Ta có: \(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)
Lại có: \(\Delta ABC\)cân tại A ( gt )
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{ADE}=\widehat{ABC}\)
mà 2 góc này ở vị trí đồng vị
\(\Rightarrow DE//BC\left(đpcm\right)\)
a ) Tam giác ABC cân tại A => AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
=> \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\) ( 1 )
Ta có : AB = AD + BD
AC = AE + CE
Mà AB = AC , BD = CE
=> AD = AE
=> Tam giác ADE cân tại A
=> \(\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ) => \(\widehat{B}=\widehat{ADE}\)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC
b ) Xét \(\Delta ABE\)và \(\Delta ACD\)có :
AB = AC ( do tam giác ABC cân tại A )
\(\widehat{A}\) là góc chung
AD = AE ( do tam giác ADE cân tại A )
=> \(\Delta ABE=\Delta ACD\)( c.g.c )
c ) Xét \(\Delta DBC\)và \(\Delta ECB\)có :
BD = CE ( gt )
\(\widehat{DBC}=\widehat{ECB}\)( do tam giác ABC cân tại A )
BC là cạnh chung
=> \(\Delta DBC=\Delta ECB\)( c.g.c )
=> \(\widehat{DCB}=\widehat{EBC}\)
=> Tam giác IBC cân tại I
=> IB = IC
Xét \(\Delta AIB\)và \(\Delta AIC\)có :
AI là cạnh chung
AB = AC ( do tam giác ABC cân tại A )
IB = IC ( cmt )
=> \(\Delta AIB=\Delta AIC\)( c.c.c)
=> \(\widehat{BAI}=\widehat{CAI}\)
=> AI là tia p/g của góc A
Nguyễn Thuỳ Linh Hình như bài này t lm cho c r mà nhỉ
( Hình tự vẽ )
a) +) Xét \(\Delta\)ABE và \(\Delta\)ACD có
AB = AC ( gt)
\(\widehat{BAC}\) : góc chung
AE = AD ( gt)
=> \(\Delta\)ABE = \(\Delta\)ACD (c-g-c)
b) Theo câu a ta có \(\Delta\)ABE = \(\Delta\)ACD
=> BE = CD ( 2 cạnh tương ứng )
c) +) Xét \(\Delta\) ABC cân tại A
=> \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\) (1) ( tính chất tam giác cân )
+) Xét \(\Delta\)AED có AE = AD ( gt)
=> \(\Delta\)AED cân tại A
=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\) (2) ( tính chất tam giác cân )
Từ (1) và (2) \(\Rightarrow\widehat{ABC}=\widehat{AED}\)
Mà 2 góc này ở vị trí đồng vị
=> ED // BC
@@ Hc tốt
Takigawa Miu_