Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét \(\Delta\)AHB và AHD có:AH chung
BH=HD(gt)
AHB=AHD=90
vậy tam giác AHB= tam giác AHC
b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha
Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)
Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)
suy ra tam giác ABD đều
c,Dễ thấy được tam giác ADC cân tại D nên AD=DC
Xét tam giác AHD và tam giác CED có:
AD=DC
HDA=EDC(2 góc đối đỉnh)
AHD=CED=90
nên tam giác AHD=tam giác CED(ch-gn)
suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB
vậy HB=DE(đpcm)
d, I là giao điểm của CE và AH chứ bạn
Xét tam giác AIC có : AE vuông góc với IC
CH vuông góc với IA
mà CH cắt AE tại D
nên D là trực tâm của tam giác IAC
hay ID vuống góc với AC
mặt khác DF vuông góc với AC
nên I ,D,F thẳng hàng
Chúc bạn học tốt
a,Xét \(\Delta AHB\)và \(\Delta AHD\)có
AH chung
HB=HD
\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)
=> \(\Delta AHB\)=\(\Delta AHD\)
b, xem lại đề
c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)
\(\Rightarrow\widehat{DAC}=30^0\)
\(\Rightarrow\Delta DAC\)cân tại D
\(\Rightarrow DA=DC\)
Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)
\(\Rightarrow HD=DE=BH\)(ĐPCM)
d,Xem lại đề
Chúc học tốt!!!!!! :)
bạn dùng tính chất đương phân giác rồi suy ra tỉ leejj bằng nhau
A D B C K I 1 1 2 1
a) Vì ABCD là hình bình hành ( GT )
\(\Rightarrow AD//BC\left(Tc\right)\)
\(\Rightarrow\widehat{KAI}=\widehat{AIB}\)( 2 góc so le trong )
Mà \(\widehat{KAI}=\widehat{BAI}\)( vì AI là phân giác của góc BAD )
\(\Rightarrow\widehat{AIB}=\widehat{BAI}\)
Xét \(\Delta ABI\)có : \(\widehat{AIB}=\widehat{BAI}\)
\(\Rightarrow\Delta ABI\) cân tại B ( Dấu hiệu nhận biết )
b) Ta có : CK là phân giác của góc DCI ( GT )
\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{DCI}}{2}\left(1\right)\)
AI là phân giác của góc BAK ( GT )
\(\Rightarrow\widehat{BAI}=\widehat{A_1}=\frac{\widehat{BAK}}{2}\left(2\right)\)
Mà \(\widehat{BAK}=\widehat{DCI}\) ( ABCD là hình bình hành ) (3)
Từ ( 1 ) ,(2 ) ,( 3)
\(\Rightarrow\widehat{BAI}=\widehat{C_2}\)
Mà \(\widehat{BAI}=\widehat{BIA}\)( chứng minh trên)
\(\Rightarrow\widehat{BIA}=\widehat{C_2}\)
c) Bạn tự làm nốt nha !
a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
c.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2
a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
c.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2
mk bo tay
hoi chi GOOGLE nha ban
...
Xét \(\Delta BEC\)Và \(\Delta BFD\) có :
\(\widehat{BEC}\) \(=\)\(\widehat{BFD}\) ( cùng = 900 )
\(\widehat{B}\) chung
\(\Rightarrow\)\(\Delta BEC\) \(~\)\(\Delta BFD\) ( g - g )
Do \(\Delta BEC~\Delta BFD\): \(\Rightarrow\)\(\frac{BE}{BF}\)\(\frac{BC}{B\text{D}}\)
Xét \(\Delta BEF\) Và \(\Delta BC\text{D}\) có :
\(\frac{BE}{BF}\)\(=\) \(\frac{BC}{B\text{D}}\)
\(\widehat{B}\) chung
\(\Rightarrow\) \(\Delta BEF\) \(~\) \(\Delta BC\text{D}\)( c - g - c )