K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ 
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
c.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2

a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ 
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
c.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2

27 tháng 4 2019

mk bo tay

hoi chi GOOGLE nha ban

...

28 tháng 4 2019

Xét \(\Delta BEC\)Và   \(\Delta BFD\) có :

     \(\widehat{BEC}\) \(=\)\(\widehat{BFD}\) ( cùng = 900 )

         \(\widehat{B}\) chung 

  \(\Rightarrow\)\(\Delta BEC\) \(~\)\(\Delta BFD\) ( g - g )

Do \(\Delta BEC~\Delta BFD\)\(\Rightarrow\)\(\frac{BE}{BF}\)\(\frac{BC}{B\text{D}}\)

Xét \(\Delta BEF\) Và   \(\Delta BC\text{D}\) có :

   \(\frac{BE}{BF}\)\(=\) \(\frac{BC}{B\text{D}}\)

    \(\widehat{B}\) chung

\(\Rightarrow\) \(\Delta BEF\) \(~\) \(\Delta BC\text{D}\)( c - g - c )

6 tháng 5 2019

giúp nhé <3

11 tháng 7 2020

cuc cuc ai bi con cac

16 tháng 4 2020

Giải:

27 tháng 3 2019

Hình bạn tự vẽ nhé

a) Xét tam giác ABD và tam giác ACE ta có: 

\(\hept{\begin{cases}\widehat{BAC}-chung\\\widehat{BDA}=\widehat{CEA}=90^o\end{cases}}\Rightarrow\Delta ABD~\Delta ACE\left(g.g\right)\)

b) H là giao điểm của BD và CE suy ra H là trực tâm của tam giác ABC

=> AH là đường cao thứ 3 của tam giác ABC => \(AH\perp BC\)

Xét \(\Delta CEB\) và \(\Delta CKH\) ta có:

\(\hept{\begin{cases}\widehat{CEB}=\widehat{CKH}=90^o\\\widehat{ECB}-chung\end{cases}}\Rightarrow\Delta CEB~\Delta CKH\left(g.g\right)\Rightarrow\frac{CE}{CK}=\frac{BC}{CH}\Rightarrow CE.CH=BC.CK\)(1)

c) Ta có: Xét \(\Delta BKH\) và \(\Delta BDC\) ta có:

\(\hept{\begin{cases}\widehat{DBC}-chung\\\widehat{HKB}=\widehat{BDC}=90^o\end{cases}}\Rightarrow\frac{BK}{BD}=\frac{BH}{BC}\Rightarrow BK.BC=BH.BD\)(2)

Cộng theo vế của (1) và (2):

\(BH.BD+CH.CE=BC\left(CK+BK\right)=BC^2\left(đpcm\right)\)