\(\alpha\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 10 2020

\(\widehat{O}=2\widehat{AOH}=2\alpha\)

Trong tam giác vuông AOK:

\(AK=OA.sin\widehat{O}=a.sin\left(2\alpha\right)\)

Trong tam giác vuông AOH:

\(OH=OA.cos\widehat{AOH}=a.cos\alpha\)

26 tháng 10 2020

vậy TH góc AOH tù thì sao bạn? Không xét à?

30 tháng 3 2017

Ta có = 2α => Trong tam giác OKA có:

AK = OA.sin. => AK = a.sin2α

OK =OA.cos. => OK = a.cos2α

     O A B H K

 

8 tháng 9 2017

Giải bài 2 trang 40 sgk Hình học 10 | Để học tốt Toán 10

ΔAOB cân tại O nên OH là đường cao đồng thời là đường phân giác

Giải bài 2 trang 40 sgk Hình học 10 | Để học tốt Toán 10

Xét ΔOAK vuông tại K có:

Giải bài 2 trang 40 sgk Hình học 10 | Để học tốt Toán 10

13 tháng 4 2016

 

Ta có  = 2α   =>  Trong tam giác OKA có:

AK = OA.sin.  =>  AK = a.sin2α

OK =OA.cos.  =>  OK = a.cos2α

15 tháng 4 2017

a) Do 0 < α < nên sinα > 0, tanα > 0, cotα > 0

sinα =

cotα = ; tanα =

b) π < α < nên sinα < 0, cosα < 0, tanα > 0, cotα > 0

cosα = -√(1 - sin2 α) = -√(1 - 0,49) = -√0,51 ≈ -0,7141

tanα ≈ 0,9802; cotα ≈ 1,0202.

c) < α < π nên sinα > 0, cosα < 0, tanα < 0, cotα < 0

cosα = ≈ -0,4229.

sinα =

cotα = -

d) Vì < α < 2π nên sinα < 0, cosα > 0, tanα < 0, cotα < 0

Ta có: tanα =

sinα =

cosα =

18 tháng 5 2017

a) \(0< \alpha< 90^o\)
b) \(90^o< \alpha< 180^o\)
c) \(0< \alpha< 90^o\)
d) \(90^o< \alpha< 180^o\)

21 tháng 4 2017

a)\(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\sin^2\alpha=1-\cos^2\alpha\)

\(\Rightarrow1-2^2=-3\) \(\Rightarrow\cos=-\sqrt{3}\left(0< \alpha< \dfrac{\pi}{2}\right)\)

b) \(\tan\alpha\times\cot\alpha=1\Rightarrow\tan\alpha=\dfrac{1}{\cot\alpha}\Rightarrow\tan=\dfrac{1}{4}\)

11 tháng 5 2017

a)Do \(0< \alpha< \dfrac{\pi}{2}\) nên các giá trị lượng giác của \(\alpha\) đều dương.
\(cos\alpha=2sin\alpha\)(1)
Nếu \(sin\alpha=0\Rightarrow cos\alpha\) (vô lý).
Vì vậy \(sin\alpha\ne0\) . Từ (1) \(\Rightarrow\dfrac{cos\alpha}{sin\alpha}=2\)\(\Leftrightarrow cot\alpha=2\).
Suy ra: \(tan\alpha=\dfrac{1}{2}\).
\(sin\alpha=\sqrt{\dfrac{1}{1+cot^2\alpha}}=\dfrac{1}{\sqrt{3}}\).
\(cos\alpha=\sqrt{1-sin^2\alpha}=\sqrt{\dfrac{2}{3}}\).

10 tháng 5 2017

a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(tan\alpha,cot\alpha>0\)\(sin\alpha,cos\alpha< 0\).
\(\left\{{}\begin{matrix}tan\alpha-3cot\alpha=6\\tan\alpha cot\alpha=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\\left(6+3cot\alpha\right)cot\alpha=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\3cot^2\alpha+6cot\alpha-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=6+3cot\alpha\\cot\alpha=\dfrac{-3+2\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}tan\alpha=3+2\sqrt{3}\\cot\alpha=\dfrac{-3+2\sqrt{3}}{3}\end{matrix}\right.\).
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Rightarrow cos^2\alpha=\dfrac{1}{tan^2\alpha+1}\).
Có thể đề sai.

30 tháng 3 2017

Hỏi đáp Toán