Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\) a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\) d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD = DEb )...
Đọc tiếp
Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :
b )\(\Delta ABD=\Delta ACE\) a ) AM vuông góc với BC
c )\(\Delta ACD=\Delta ABE\) d ) AM là tia phân giác của góc DAE
Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE
b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .
c ) Chứng minh \(\Delta KBE=\Delta CEB\)
d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .
Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :
a ) AP = QF
b ) \(\Delta APQ=\Delta QFC\)
c ) Q là trung điểm của AC
d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB
Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC
. b ) Chứng minh AD // BC .
c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .
Mình đang cần gấp ạ
a, Xét \(\Delta\) CAB và \(\Delta\) CDE có
- CA = CD
- góc ACB = góc DCE
- BC = EC
=> \(\Delta\) CAB = \(\Delta\) CDE ( c.g.c)
b, theo câu a => góc ABC = góc CED ( 2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong => AB//DE
c, Theo câu b => góc EDB = góc FBD ( so le trong)
Ta có: DF//BE => góc EBD = góc FDB ( so le trong)
Xét \(\Delta\) BDE và \(\Delta\) DBF có:
- góc EDB = góc FBD ( chứng minh trên)
- BD chung
- góc EBD = góc FDB ( chứng minh trên)
=> \(\Delta\) BDE = \(\Delta\) DBF ( g.c.g)
=> BE = DF ( 2 cạnh tương ứng)
Giup mik di may bn,mik can gap