Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này đáng lẽ phải là TRÊN TIA ĐỐI CA LẤY E SAO CHO BD=CE. Quên vẽ điểm F mà câu a) dễ nên tự thêm vô nha.
a) Ta có ^BFD = ^ACB ( DF // AC, đồng vị)
Mà ^ABC = ^ACB ( tam giác ABC cân tại A)
=> ^ABC = ^BFD
Vậy tam giác FBD cân tại D (đpcm)
b) Kẻ \(DM\perp BC;EN\perp BC\)
Ta thấy ngay: \(\Delta BDM=\Delta CEN\left(ch-gn\right)\)
=> MD = NE (hai cạnh tương ứng)
=> \(\Delta DMI=\Delta ENI\left(g.c.g\right)\)
=> DI = EI hay I là trung điểm của DE (đpcm)
c) Ta có: AD + AE = AB - BD + AC + CE = AB + AC = 2AB (không đổi)
=> đpcm...
Đề bị sai em kiểm tra lại đề đi! Chỗ trên AB lấy D , trên tia đối AC lấy E sao cho BD = CE ấy.
Ta có: △△ABC cân tại A ⇒⇒ ABCˆ=ACBˆABC^=ACB^ (1)
DF//AC ⇒⇒ DF//EC ⇒⇒ {ACBˆ=DFBˆ(2)FDIˆ=IECˆ(3){ACB^=DFB^(2)FDI^=IEC^(3)
Từ (1);(2) ⇒⇒ ABCˆ=DFBˆABC^=DFB^
⇒⇒ △△DFB cân tại D
⇒⇒ BD=DF.
Mà BD=CE(gt) ⇒⇒ CE=DF.
Xét △△FDI và △△CEI có:
DF=CE(cmt)
FDIˆ=IECˆFDI^=IEC^ (cmt)
DI=IE(I là trung điểm DE)
⇒⇒ △△FDI = △△CEI (c-g-c)
⇒⇒ FIDˆ=EICˆFID^=EIC^
Ta có: DICˆ+CIEˆDIC^+CIE^ = 180o
Mà FIDˆ=EICˆFID^=EIC^ (cmt)
⇒⇒ DICˆ+DIFˆDIC^+DIF^ = 180o
⇒⇒ FICˆ=1800FIC^=1800
Hay BICˆ=1800BIC^=1800
⇒⇒ 3 điểm B,I,C thẳng hàng (đpcm)