Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm gì có khái niệm hai tia bằng nhau.
ĐỀ ĐÚNG phải là hai ĐƯỜNG phân giác bằng nhau.
Tam giác ABC cân tại C có góc ACB=100 suy ra ABC=BAC=40
Trên AB lấy điểm M sao cho AM=AD. Tam giác ADM cân tại A có góc A=20 => ADM=AMD=80 độ
Suy ra góc MDB=40 độ. Tam giác MDB cân tại M. MD=MB.(1)
Trên AB lấy điểm N sao cho AN=AC. Tam giác ACD=AND(c.g.c) => CD=DN (2)
Ta có: góc DNM=DMN=80 => Tam giác DNM cân tại D. DN=DM (3)
Từ (1),(2),(3) suy ra DC=MB
Hay AD+DC=AM+MB=AB(dpcm)
cho tam giác cân ABC có góc ACB = 100o . Kẻ phân giác trong của góc CAB cắt CB tại D. Chứng minh rằng AD + DC = AB
Câu hỏi tương tự Đọc thêm
\(\Delta ABC\)có: đường phân giác trong của C cắc cạnh AB tại D. Lấy điểm E trên tia CD sao cho \(\widehat{CBD}=\widehat{CEA}\)
Xét \(\Delta CBD\)và \(\Delta CEA\)có:
\(\widehat{BCD}=\widehat{ACD}\)( đường phân giác trong của C cắc cạnh AB tại D )
\(\widehat{CBD}=\widehat{CEA}\)
\(\Rightarrow\Delta CBD\)đồng dạng với \(\Delta CEA\left(g.g\right)\)
\(\Rightarrow\frac{CD}{CA}=\frac{BC}{EC}\Leftrightarrow BC.AC=EC.CD\)
Mà \(EC=CD+DE\)
nên \(BC.AC=CD\left(CD+DE\right)\)
\(\Leftrightarrow BC.AC=CD^2+CD.DE\)
\(\Rightarrow CD^2< CA.CB\)