K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm

23 tháng 4 2020

bạn vào link này nhé, mk ko bt cho ảnh kiểu j hết

file:///C:/Users/ANH%20QUY/Pictures/Capture.PNG

DD
9 tháng 6 2021

d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)). 

suy ra \(AE\perp CD\).

Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).

Ta có: 

\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))

suy ra \(\widehat{CAE}=\widehat{ABM}\)

mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)

do đó \(BM\perp AE\).

Từ đây ta có đpcm. 

7 tháng 4 2021

undefinedundefined

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{ABC}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔHBA\(\sim\)ΔHAC(g-g)

Suy ra: \(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=HB\cdot HC\)(đpcm)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

=>\(\dfrac{AC}{HC}=\dfrac{AB}{AH}\)

=>\(\dfrac{AH}{AB}=\dfrac{HC}{AC}\left(1\right)\)

=>\(AH\cdot AC=AB\cdot HC\)

b: Ta có: ΔAHC vuông tại H

=>\(HA^2+HC^2=AC^2\)

=>\(HA^2=15^2-9^2=144\)

=>\(HA=\sqrt{144}=12\left(cm\right)\)

Xét ΔCAH có CD là phân giác

nên \(\dfrac{AD}{AC}=\dfrac{HD}{HC}\)

=>\(\dfrac{AD}{15}=\dfrac{HD}{9}\)

=>\(\dfrac{AD}{5}=\dfrac{HD}{3}\)

mà AD+HD=AH=12cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{5}=\dfrac{HD}{3}=\dfrac{AD+HD}{5+3}=\dfrac{12}{8}=1,5\)

=>\(AD=1,5\cdot5=7,5\left(cm\right);HD=3\cdot1,5=4,5\left(cm\right)\)

c: Xét ΔHAB có AI là phân giác

nên \(\dfrac{HI}{IB}=\dfrac{AH}{AB}\)(2)

Ta có: \(\dfrac{AD}{AC}=\dfrac{HD}{HC}\)

=>\(\dfrac{HD}{HC}=\dfrac{AD}{AC}\)

=>\(\dfrac{HD}{DA}=\dfrac{HC}{AC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{HD}{DA}=\dfrac{HI}{IB}\)

Xét ΔHAB có \(\dfrac{HD}{DA}=\dfrac{HI}{IB}\)

nên DI//AB

13 tháng 5 2015

mình không biết vẽ hình nên chỉ giải cho bạn thôi nha

a) Xét tam giác DBA và Tam giác ABC có

D=A=90 độ

B góc chung

vậy tam giác DBA đồng dạng với tam giác ABC (g.g)

b) 

vì Góc A = 90  độ nên góc B + góc C = 90 độ

mà Góc B = 2Góc c nên 2góc C+ góc C =90 độ

<=> 3Góc C=90 độ => Góc C = 30 độ

Góc B=60 độ

mà BE là phân giác Góc B nên góc ABE= góc EBC= ECB = 30 độ

Xét Tam giác ABE và Tam giác ACB có

    Góc A chung

    góc ABE= ECB(cmt)

vậy Tam giác ABE đồng dạng với tam giác ACB(g.g)

=> \(\frac{AB}{AC}=\frac{AE}{AB}\Rightarrow AB.AB=AC.AE\)(điều phải chứng minh)

c) Vì  tam giác DBA đồng dạng với tam giác ABC

=> \(\frac{AB}{BC}=\frac{BD}{AB}\)(1)

Tam giác ABD có BF là phân giác góc B, ta có

     \(\frac{FD}{FA}=\frac{BD}{AB}\left(2\right)\)

Tam giác ABC có BE là phân giác góc B, ta có:

     \(\frac{AE}{EC}=\frac{AB}{AC}\left(3\right)\)

Từ (1),(2) và (3) ta suy ra \(\frac{FD}{FA}=\frac{AE}{EC}\Rightarrow EA.FA=EC.FD\)(điều phải chứng minh)