K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

b ) Xét tam giác ABD và tam giác KBD , có

BD cạnh chung

góc ABD = góc KBD ( gt )

BA = BK ( tam giác ABK cân tại B )

suy ra tam giác ABD = tam giác KBD ( c.g.c)

suy ra góc BAD = góc BKD ( 2 góc tương ứng)

mà góc BAD = 90 độ

suy ra BKD = 90 độ

nên DK vuông góc BC

19 tháng 7 2015

a) Tam giác ABK có BE vừa là đường cao vừa là phân giác nên tam giác ABK cân tại B

=> BE là đường trung trực của đoạn thẳng AK.

hay A và K đối xứng nhau qua BD.

b) Xét tam giác ABD và KBD có 

    AB=KB(tam giác ABK cân tại B)

Góc ABD=KBD(gt)

BD cạnh chung .

Vậy tam giác ABD và KBD bằng nhau theo trường hợp (c.g.c).

=> Góc DKB=DAB=90 độ(hai góc tương ứng)

hay DK vuông góc với BC.

c)Ta có:  góc: HAK+HKA=90 độ ( cùng phụ với góc H trong tam giác AHK).

       và góc: KAC+BAK= góc A= 90 độ

mà góc BAK= HKA( tam giác ABK cân tại B).

từ 3 điều này suy ra góc HAK=KAC hay AK là tia phân giác góc HAC.

d) Tam giác ABK có AH, BE là các đường cao giao nhau tại I nên I là trực tâm.

=> KI cũng là đường cao

Hay KI vuông góc với AB.

mà AC vuông góc với AB( do tam giác ABC vuông tại A)

TỪ hai điều này suy ra IK//AC

Tứ giác IKCA có IK//AC nên IKCA là hình thang.

4 tháng 1 2017

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC