K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

A M B C N D H

a) *Xét \(\Delta HAD\)\(\Delta HCB\) có:

\(\left\{{}\begin{matrix}AH=HC\left(gt\right)\\\widehat{AH\text{D}}=\widehat{CHB}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BH=HD\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta HAD=\Delta HCB\left(c-g-c\right)\)

b) *Xét \(\Delta AHB\)\(\Delta CHD\) có:

\(\left\{{}\begin{matrix}AH=HC\left(gt\right)\\\widehat{AHB}=\widehat{CHD}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BH=HD\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AHB=\Delta CHD\left(c-g-c\right)\)

\(\Rightarrow\widehat{HAB}=\widehat{HCD}\) (hai góc tương ứng)

\(\widehat{HAB}\)\(\widehat{HCD}\) ở vị trí so le trong

\(\Rightarrow AB//CD\)

c) *Xét \(\Delta AHM\)\(\Delta CHN\)có:

\(\left\{{}\begin{matrix}AH=HC\left(gt\right)\\\widehat{AHM}=\widehat{CHN}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\\widehat{HAM}=\widehat{HCN}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AHM=\Delta CHN\left(g-c-g\right)\)

\(\Rightarrow MH=HN\) (hai cạnh tương ứng)

*Xét \(\Delta CMH\)\(\Delta ANH\) có:

\(\left\{{}\begin{matrix}CH=AH\left(gt\right)\\\widehat{MHC}=\widehat{NHA}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\MH=HN\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta CMH=\Delta ANH\left(c-g-c\right)\)

13 tháng 12 2019

ĐÚNG

19 tháng 1 2022

a) Xét tam giác HAD và tam giác HCB có:

+ HD = HB (gt).

\(\widehat{AHD}=\widehat{CHB}\) (đối đỉnh).

+ HA = HC (H là trung điểm AC).

=> Tam giác HAD = Tam giác HCB (c - g - c).

b) Xét tứ giác ADCB có:

+ H là trung điểm AC (gt).

+ H là trung điểm BD (HD = HB).

=> Tứ giác ADCB là hình bình hành (dhnb).

=> AB // DC (Tính chất hình bình hành).

c) Ta có: AB // DC (cmt). \(\Rightarrow\widehat{HAM}=\widehat{HCN}\) (SLT).

Xét tam giác AHM và tam giác CHN có:

\(\widehat{AHM}=\widehat{CHN}\) (đối đỉnh).

+ AH = CH (H là trung điểm AC).

\(\widehat{HAM}=\widehat{HCN}\) (cmt).

=> Tam giác AHM = Tam giác CHN (g - c - g).

Xét tam giác CMH và tam giác ANH có:

+ CH = AH (Tam giác AHM = Tam giác CHN).

\(\widehat{CHM}=\widehat{AHN}\) (đối đỉnh).

+ MH = NH (Tam giác AHM = Tam giác CHN).

=> Tam giác CMH = Tam giác ANH (c - g - c).

2 tháng 1 2022

a) Xét tam giác AHB và tam giác AHE có

  BH=HE

  AH chung

  góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)

  => tam giác AHB= tam giác AHE (c.g.c)

  =>HE=HB

b) Xét tam giác AHB và tam giác DHE có

   góc DHE = góc AHB ( đối  đỉnh)

   HE=HB (cmt)

   AH=HD

 => tam giác AHB=tam giác DHE (c.g.c)

 => DE= AB ( 2 cạnh tương ứng)

=> tam giác DHE= tam giác AHE =tam giác AHB

=> AE=DE(2 cạnh tương ứng)

c) Xét tam giác AHC và tam giác DHC có

  HC chung

  góc AHE=góc DHE=90 độ

  AH=HD

 => tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)

=>AC=DC (2 cạnh tương ứng)

Xét tam giác ACE và tam giác DCE có

  AE= DE (cmt)

  AC= DC(cmt)

  CE chung

 => tam giác ACE= tam giác DCE(c.c.c)

 => góc EAC= góc EDC (2 góc tương ứng)

  

2 tháng 1 2022

d)Ta có: C,E,B thẳng hàng

=> góc CEA+ góc AEB= 180 độ

Mà góc CEN và góc AEB là 2 góc đối đỉnh

=>góc AEC+ góc CEN= 180 độ

 => A,E,N thẳng hàng

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

17 tháng 12 2022

a: Xét ΔABM và ΔCDM có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

nên AB=CD và góc ABM=góc CDM

=>AB//CD

=>CE vuông góc với AC

=>AC vuông góc DE

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0
7 tháng 1

loading... a) Do M là trung điểm của BC (gt)

⇒ BM = MC

Do M là trung điểm của AD (gt)

⇒ AM = MD

Xét ∆ABM và ∆DCM có:

AM = MD (cmt)

∠AMB = ∠CMD (đối đỉnh)

BM = MC (cmt)

⇒ ∆ABM = ∆DCM (c-g-c)

b) Do ∆ABM = ∆DCM (cmt)

⇒ ∠ABM = ∠CDM (hai góc tương ứng)

Mà ∠ABM và ∠CDM là hai góc so le trong

⇒ AB // CD

c) Do AB // CD (cmt)

⇒ ∠CAE = ∠ACD (so le trong)

∠ACE = ∠CAD (so le trong)

Xét ∆ACE và ∆CAD có:

∠ACE = ∠CAD (cmt)

AC là cạnh chung

∠CAE = ∠ACD (cmt)

⇒ ∆ACE = ∆CAD (g-c-g)

⇒ AE = CD (hai cạnh tương ứng)

Do ∆ABM = ∆DCM (cmt)

⇒ AB = CD (hai cạnh tương ứng)

Mà AE = CD (cmt)

⇒ AB = AE

Vậy A là trung điểm của BE

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)