Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác HAD và tam giác HCB có:
+ HD = HB (gt).
+ \(\widehat{AHD}=\widehat{CHB}\) (đối đỉnh).
+ HA = HC (H là trung điểm AC).
=> Tam giác HAD = Tam giác HCB (c - g - c).
b) Xét tứ giác ADCB có:
+ H là trung điểm AC (gt).
+ H là trung điểm BD (HD = HB).
=> Tứ giác ADCB là hình bình hành (dhnb).
=> AB // DC (Tính chất hình bình hành).
c) Ta có: AB // DC (cmt). \(\Rightarrow\widehat{HAM}=\widehat{HCN}\) (SLT).
Xét tam giác AHM và tam giác CHN có:
+ \(\widehat{AHM}=\widehat{CHN}\) (đối đỉnh).
+ AH = CH (H là trung điểm AC).
+ \(\widehat{HAM}=\widehat{HCN}\) (cmt).
=> Tam giác AHM = Tam giác CHN (g - c - g).
Xét tam giác CMH và tam giác ANH có:
+ CH = AH (Tam giác AHM = Tam giác CHN).
+ \(\widehat{CHM}=\widehat{AHN}\) (đối đỉnh).
+ MH = NH (Tam giác AHM = Tam giác CHN).
=> Tam giác CMH = Tam giác ANH (c - g - c).
a) *Xét \(\Delta HAD\) và \(\Delta HCB\) có:
\(\left\{{}\begin{matrix}AH=HC\left(gt\right)\\\widehat{AH\text{D}}=\widehat{CHB}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BH=HD\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta HAD=\Delta HCB\left(c-g-c\right)\)
b) *Xét \(\Delta AHB\) và \(\Delta CHD\) có:
\(\left\{{}\begin{matrix}AH=HC\left(gt\right)\\\widehat{AHB}=\widehat{CHD}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BH=HD\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AHB=\Delta CHD\left(c-g-c\right)\)
\(\Rightarrow\widehat{HAB}=\widehat{HCD}\) (hai góc tương ứng)
Mà \(\widehat{HAB}\) và \(\widehat{HCD}\) ở vị trí so le trong
\(\Rightarrow AB//CD\)
c) *Xét \(\Delta AHM\) và \(\Delta CHN\)có:
\(\left\{{}\begin{matrix}AH=HC\left(gt\right)\\\widehat{AHM}=\widehat{CHN}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\\widehat{HAM}=\widehat{HCN}\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AHM=\Delta CHN\left(g-c-g\right)\)
\(\Rightarrow MH=HN\) (hai cạnh tương ứng)
*Xét \(\Delta CMH\) và \(\Delta ANH\) có:
\(\left\{{}\begin{matrix}CH=AH\left(gt\right)\\\widehat{MHC}=\widehat{NHA}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\MH=HN\left(cmt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta CMH=\Delta ANH\left(c-g-c\right)\)
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC(tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD=tam giác ACE(ch-gn)
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
Và \(\widehat{ABD}=\widehat{ACE}\) ( tam giác ABD=ACE)
\(\Leftrightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\)
Do đó tam giác BHC cân tại H
a) Xét tam giác AHB và tam giác AHE có
BH=HE
AH chung
góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)
=> tam giác AHB= tam giác AHE (c.g.c)
=>HE=HB
b) Xét tam giác AHB và tam giác DHE có
góc DHE = góc AHB ( đối đỉnh)
HE=HB (cmt)
AH=HD
=> tam giác AHB=tam giác DHE (c.g.c)
=> DE= AB ( 2 cạnh tương ứng)
=> tam giác DHE= tam giác AHE =tam giác AHB
=> AE=DE(2 cạnh tương ứng)
c) Xét tam giác AHC và tam giác DHC có
HC chung
góc AHE=góc DHE=90 độ
AH=HD
=> tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)
=>AC=DC (2 cạnh tương ứng)
Xét tam giác ACE và tam giác DCE có
AE= DE (cmt)
AC= DC(cmt)
CE chung
=> tam giác ACE= tam giác DCE(c.c.c)
=> góc EAC= góc EDC (2 góc tương ứng)
d)Ta có: C,E,B thẳng hàng
=> góc CEA+ góc AEB= 180 độ
Mà góc CEN và góc AEB là 2 góc đối đỉnh
=>góc AEC+ góc CEN= 180 độ
=> A,E,N thẳng hàng
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)