Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Bài giải
Bài 2 : Bài giải
Bài 3 : Bài giải
Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có :
\(BA=BE\) ( gt )
\(BD\) : cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )
\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
....
Tự làm tiếp nha ! Mình bận rồi !
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
b: Ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\) và DB=DE
Xét ΔAEF và ΔABC có
\(\widehat{AEF}=\widehat{ABC}\)
AE=AB
\(\widehat{EAF}\) chung
Do đó: ΔAEF=ΔABC
=>AC=AF
trong tam giác cân, đường trung trực đồng thời là tia phân giác.
=> BAD=20 độ
góc ABC= 90độ-20 độ=70 độ
Xét 2 tam giác ADB và EDB có:
ADB= EDB=90 độ(gt)
BD chung(gt)
AD=DE(gt)
=> 2 tam giác= nhau theo trường hợp 2 cạnh góc vuông(c.g.c)
=> BAD=BED=20 độ (2 góc tương ứng)
=> ABD=EBD=70 độ (2 góc tương ứng)
còn D=90 độ
nhớ tick. cảm ơn
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
b: Xét ΔAEB và ΔAFC có
EB=FC
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
Do đó: ΔAEB=ΔAFC
Suy ra: AE=AF