Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi a,b,c là các cạnh của tam giác ABC tương ứng với các cạnh BC;AC;AB. Vì bán kính đường tròn nội tiếp r = 1 nên dễ thấy diện tích tam giác ABC là: \(S_{ABC}=\frac{1}{2}r\cdot\left(a+b+c\right)=\frac{1}{2}\left(a+b+c\right)\)(1)
- Gọi \(h_a;h_b;h_c\)lần lượt là độ dài các đường cao ứng với các cạnh a;b;c. nên:\(S_{ABC}=\frac{1}{2}ah_a=\frac{1}{2}bh_b=\frac{1}{2}ch_c\)
(2)
- Từ (1) và (2) ta suy ra: \(ah_a=bh_b=ch_c=\left(a+b+c\right)\)
- Hay: \(\frac{a}{\frac{1}{h_a}}=\frac{b}{\frac{1}{h_b}}=\frac{c}{\frac{1}{h_c}}=\frac{a+b+c}{\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}}=a+b+c\)
- Nên: \(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}=1\)
- Giải phương trình này với các nghiệm \(h_a;h_b;h_c\)nguyên dương với giả thiết \(h_a\ge h_b\ge h_c\)
- \(h_c=1\)=> ko có \(h_a;h_b\)thỏa mãn.
- \(h_c=2\)thì \(h_b\)ko thể =2 vì ko có \(h_a\)thỏa mãn; nếu \(h_b=3\)thì \(h_a=6\); nếu \(h_b\ge4\)thì \(h_a\le4\)trái giả thiết nên loại.
- \(h_c=3\)thì \(h_b=3;h_a=3\)
- Nếu \(h_c>3\)thì \(\frac{1}{h_c}< \frac{1}{3}\)số lớn nhất nhỏ hơn trung bình cộng 3 số, vô lý=> Loại.
- Đối với nghiệm \(h_a;h_b;h_c\)=(6;3;2) có 1 đường cao bằng 2 tức là gấp 2 lần bán kính đường tròn nội tiếp - vô lý nên bị loại (Bạn có thể vẽ hình để chứng minh).
- Nên chỉ có 1 nghiệm \(h_a;h_b;h_c\)=(3;3;3) thỏa mãn và khi đó các cạnh \(a=b=c=2\sqrt{3}\)
opps hihi xin lỗi lúc nảy em làm vội nên sai,thế này mới chính là câu trả lời của em
Lời giải. Kẻ OA1⊥BC,OB1⊥AC,OC1⊥AB. Khi đó tứ giác OA1C1B,OA1B1C,OC1AB1 nội tiếp nên theo định lý Ploteme ta có
⎨aR=bz+cy
az=cx+bR⇒R(a+b+c)=b(z−x)+c(y−x)+a(y+z)(1)
ay=bx+cR
Ta lại có 2SABC=r(a+b+c)=cz+by−ax (2)
Cộng (1)với (2) ta thu được R+r=y+z−x. ■
a) Đường cao BH = CK = a
BC = a/sinα
Kẻ đg cao AD ⇒ BD = DC = a/2sinα
⇒ AD = BD.tanα = sinα/cosα . a/2sinα = a/2cosα
AB = AC = AD/sinα = a/2sinαcosα = a/sin2α
b) Dễ dàng có đc S = pr
⇒ r = S/p = AD.BC/2AB+BC = a/2+2cosα
S = AB.BC.CA/4R
⇒ R = AB.BC.CA/4S = a/2sin22α.cosα
Xét $\Delta MNH$ và $\Delta P$ ta có:
$\large \widehat{MHN}=\widehat{MPT}=90^o$
$\large \widehat{MNP}=\widehat{MTP}$(Hai góc cùng chắn cung $MP$)
Do đó $\large \Delta MNH \sim \Delta MTP$ $(g-g)$
Từ đó: $\frac{MN}{MT}=\frac{MH}{MP}\Leftrightarrow MN.MP=MH.MT$
Xét tứ giác $NQKP$ ta có:
$\large \widehat{NQP}=\widehat{PKN}=90^o$
Mà hai góc này cùng chắn cung $NP$
Do đó tứ giác $NQKP$ là tứ giác nội tiếp
Suy ra: $\large \widehat{PKQ}+\widehat{PNQ}=180^o$ (Hai góc nội tiếp đối nhau)
Đồng thời ta có $\large \widehat{PKQ}+\widehat{MKQ}=180^o\Rightarrow \widehat{MNP}=\widehat{MTP}=\widehat{MKQ}$
Gọi $A$ là giao điểm của $QK$ và $MT$
Xét tứ giác $TPKA$ ta có:
$\large \widehat{MTP}+\widehat{PKQ}=\widehat{PKQ}+\widehat{MKQ}=180^o$
Mà hai góc này ở vị trí đối nhau nên tứ giác $TPAK$ là tứ giác nội tiếp
$\large \Leftrightarrow \widehat{MPT}+\widehat{TAK}=180^o\Leftrightarrow \widehat{TAK}=180^o-\widehat{MPT}=90^o$
Do đó $MT$ vuông góc với $QK$
Hình:
Dạ bài anh có nhầm lẫn gì kh ạ chứ khúc đầu e thấy hơi sai sai 😅😅
Vào đây Câu hỏi của Nguyễn Đình Thi - Toán lớp 9 - Học toán với OnlineMath
khó vậy