K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

Đường tròn c: Đường tròn qua C với tâm O Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, A] Đoạn thẳng k: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [B, I] Đoạn thẳng t: Đoạn thẳng [H, J] Đoạn thẳng a: Đoạn thẳng [C, I] Đoạn thẳng f_1: Đoạn thẳng [H, K] Đoạn thẳng g_1: Đoạn thẳng [J, K] Đoạn thẳng h_1: Đoạn thẳng [A, I] Đoạn thẳng i_1: Đoạn thẳng [A, J] Đoạn thẳng j_1: Đoạn thẳng [A, K] Đoạn thẳng l_1: Đoạn thẳng [I, D] Đoạn thẳng m_1: Đoạn thẳng [H, D] Đoạn thẳng r_1: Đoạn thẳng [I, M] Đoạn thẳng s_1: Đoạn thẳng [N, I] Đoạn thẳng t_1: Đoạn thẳng [P, I] Đoạn thẳng a_1: Đoạn thẳng [P, K] O = (2.34, 3.06) O = (2.34, 3.06) O = (2.34, 3.06) C = (5.72, 3.08) C = (5.72, 3.08) C = (5.72, 3.08) Điểm B: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, f Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm H: Giao điểm đường của j, g Điểm H: Giao điểm đường của j, g Điểm H: Giao điểm đường của j, g Điểm I: Giao điểm đường của l, n Điểm I: Giao điểm đường của l, n Điểm I: Giao điểm đường của l, n Điểm J: Giao điểm đường của r, q Điểm J: Giao điểm đường của r, q Điểm J: Giao điểm đường của r, q Điểm K: Giao điểm đường của d, a Điểm K: Giao điểm đường của d, a Điểm K: Giao điểm đường của d, a Điểm D: Giao điểm đường của k_1, j_1 Điểm D: Giao điểm đường của k_1, j_1 Điểm D: Giao điểm đường của k_1, j_1 Điểm P: Giao điểm đường của n_1, g Điểm P: Giao điểm đường của n_1, g Điểm P: Giao điểm đường của n_1, g Điểm M: Giao điểm đường của p, h Điểm M: Giao điểm đường của p, h Điểm M: Giao điểm đường của p, h Điểm N: Giao điểm đường của q_1, g Điểm N: Giao điểm đường của q_1, g Điểm N: Giao điểm đường của q_1, g

Kéo dài BI cắt AK tại D. Ta chứng minh \(BD\perp AK\)

Từ I kẻ \(IM\perp AB;IN\perp BC\)

Ta có ngay \(\Delta BIM=\Delta BIN\) (Cạnh huyền góc nhọn)

\(\Rightarrow BM=BN\)

Kéo dài tia AK cắt BC tại P. 

Ta có \(\Delta AIM=\Delta PIN\left(g-c-g\right)\Rightarrow AM=PN\)

Vậy thì ta có AB = AM + MB = PN + NB = BP.

Suy ra tam giác ABP cân tại B.

Xét tam giác cân ABP có BD là phân giác đồng thời đường cao. Vậy  \(BD\perp AK\)

Ta thấy HJ và HK là phân giác hai góc kề bù nên chũng vuông góc.

Xét tứ giác JDKH có \(\widehat{JDK}+\widehat{JHK}=90^o+90^o=180^o\)

Vậy JDKH là tứ giác nội tiếp. Hay \(\widehat{JKH}=\widehat{JDH}\)

Xét tứ giác BHDA có \(\widehat{ADB}=\widehat{AHB}=90^o\) nên BHDA là tứ giác nội tiếp.

Suy ra \(\widehat{BDH}=\widehat{BAH}\)

Mà \(\widehat{BAH}=\widehat{BCA}\) (Cùng phụ với góc \(\widehat{ABC}\) )

Vậy nên \(\widehat{JKH}=\widehat{BCA}\)

Xét tam giác ABC và tam giác HJK có:

\(\widehat{BAC}=\widehat{JHK}=90^o\)

\(\widehat{BCA}=\widehat{JKH}\)

\(\Rightarrow\Delta ABC\sim\Delta HJK\left(g-g\right)\)

14 tháng 11 2017

Cô giải đúng rùi nhưng em chưa học tứ giác nội tiếp đường tròn

Nhưng dù sao cũng cảm ơn cô

21 tháng 3 2018

Từng bài 1 thôi bạn!

A B C J O N K H M

vẽ trên đt thông cảm!

Do đường tròn ngoại tiếp tam giác ABC có tâm là O

Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)

Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\)

Mà AK là phân giác của \(\widehat{BAC}\)

=> AK là phân giác 

\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)

Theo bổ đề trên ta có tứ giác ANMO là hình bình hành

=> HK//AO

=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)

Hay tam giác NAK cân tại N mà N là trung điểm AH

=> AN=NH=NK

=> \(\Delta AHK\)vuông tại K

30 tháng 11 2023

a: Xét (O) có

\(\widehat{BAM}\) là góc nội tiếp chắn cung BM

\(\widehat{CAM}\) là góc nội tiếp chắn cung CM

\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của góc BAC)
Do đó: \(sđ\stackrel\frown{BM}=sđ\stackrel\frown{CM}\)

=>MB=MC

=>M nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

Xét (O) có

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ADC}=\widehat{ABC}\)

Xét ΔACD vuông tại C và ΔAHB vuông tại H có

\(\widehat{ADC}=\widehat{ABH}\)

Do đó: ΔACD đồng dạng với ΔAHB

=>\(\widehat{CAD}=\widehat{HAB}\)

\(\widehat{BAH}+\widehat{HAM}=\widehat{BAM}\)

\(\widehat{CAD}+\widehat{MAD}=\widehat{CAD}\)

mà \(\widehat{BAH}=\widehat{CAD}\) và \(\widehat{BAM}=\widehat{CAD}\)

nên \(\widehat{HAM}=\widehat{MAD}\)

=>\(\widehat{IAM}=\widehat{DAM}\)

=>AM là phân giác của góc IAD

c: Xét (O) có

\(\widehat{IAM}\) là góc nội tiếp chắn cung IM

\(\widehat{DAM}\) là góc nội tiếp chắn cung DM

\(\widehat{IAM}=\widehat{DAM}\)

Do đó: \(sđ\stackrel\frown{IM}=sđ\stackrel\frown{DM}\)

=>IM=DM

=>M nằm trên đường trung trực của DI(3)

OI=OD

=>O nằm trên đường trung trực của DI(4)

Từ (3) và (4) suy ra OM là đường trung trực của DI

=>OM\(\perp\)DI

mà OM\(\perp\)BC

nên DI//BC

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0