\(\widehat{B}\)>\(\widehat{C}\). Tia p...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

A A A B B B C C C D D D E E E I I I K K K 1 2 3 4 2 1 2 1

Tia phân giác của \(\widehat{BIC}\)cắt BC ở K.\(\Delta ABC\)có \(\widehat{A}=60^0\)

Xét \(\Delta ABC\)theo định lí tổng ba góc trong một tam giác

\(\widehat{A}+\left(\widehat{B}+\widehat{C}\right)=180^0\)

=> \(60^0+\left(\widehat{B}+\widehat{C}\right)=180^0\)

=> \(\widehat{B}+\widehat{C}=120^0\)

=> \(\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{120^0}{2}=60^0\)

\(\Delta BIC\)có \(\widehat{B_1}+\widehat{C_1}=60^0\)nên \(\widehat{B_1}+\widehat{C_1}+\widehat{BIC}=180^0\)

=> 600 + \(\widehat{BIC}\)= 1800

=> \(\widehat{BIC}=120^0\)

=> \(\widehat{I_1}=60^0,\widehat{I_4}=60^0\)

IK là tia phân giác của góc BIC nên \(\widehat{I_2}=\widehat{I_3}=60^0\)

Xét \(\Delta BIE\)và \(\Delta BIK\)có :

\(\widehat{B_1}=\widehat{B_2}\)

BI cạnh chung

\(\widehat{I_1}=\widehat{I_2}=60^0\left(cmt\right)\)

=> \(\Delta BIE=\Delta BIK\left(g.c.g\right)\)

=> IE = IK(hai cạnh tương ứng)       (1)

Xét \(\Delta CID\)và \(\Delta CIK\)có :

\(\widehat{C_1}=\widehat{C_2}\)

CI cạnh chung

\(\widehat{I_3}=\widehat{I_4}=60^0\left(cmt\right)\)

=> \(\Delta CID=\Delta CIK\left(g.c.g\right)\)

=> ID = IK(hai cạnh tương ứng)    (2)

Từ (1) và (2) => ID = IE

27 tháng 3 2020

thanks

11 tháng 5 2018

a. Ta có: AB < BC (5cm < 6cm)

$\widehat{ACB}$ < $\widehat{A}$ (quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà $\widehat{ACB}$ = $\widehat{ABC}$ ( $\Delta ABC$ cân tại A)

$\Rightarrow \widehat{ABC}$ < $\widehat{A}$

11 tháng 5 2018

b. Xét $\Delta ADB$ và $\Delta ADC$ có:

$AB = AC$ ($\Delta ABC cân tại A$)

$\widehat{BAD} = \widehat{BAC}$ ($AD là phân giác \widehat{BAC}$)

$AD$: cạnh chung

$\Rightarrow \Delta ADB = \Delta ADC (c.g.c)$

18 tháng 5 2018

a) ta có: tam giác ABC cân tại A

=> AB = AC = 5 cm ( định lí tam giác cân)

=> AC = 5 cm

=> AC < BC ( 5 cm < 6 cm)

\(\Rightarrow\widehat{ABC}< \widehat{BAC}\) ( quan hệ cạnh và góc đối diện)

b) Xét tam giác ABD và tam giác ACD

có: AB = AC (gt)

góc BAD = góc CAD (gt)

AD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-g-c\right)\)

c) Xét tam giác ABC cân tại A

có: AD là đường phân giác góc BAC (gt)

=> AD là đường trung tuyến của BC ( tính chất trong tam giác cân)

mà BE là đường trung tuyến của AC (gt)

AD cắt BE tại G (gt)

=> G là trọng tâm của tam giác ABC ( định lí trọng tâm)

=> CF là đường trung tuyến của AB ( định lí )

=> AF = BF ( định lí đường trung tuyến)

d) Xét tam giác ABC cân tại A

có: AD là đường phân giác của góc BAC (gt)

=> AD là đường cao ứng với cạnh BC ( tính chất tam giác cân)

\(\Rightarrow AD\perp BC⋮D\) ( định lí đường cao)

mà AD là đường trung tuyên của BC ( phần c)

=> BD = CD = BC/2 = 6/2 = 3 cm

=> BD = 3cm

Xét tam giác ABD vuông tại D
có: \(BD^2+AD^2=AB^2\left(py-ta-go\right)\)

thay số: \(3^2+AD^2=5^2\)

                        \(AD^2=5^2-3^2\)

                      \(AD^2=16\)

\(\Rightarrow AD=4cm\)

mà G là trọng tâm của tam giác ABC

AD là đường trung tuyến của BC

\(\Rightarrow\frac{DG}{AD}=\frac{1}{3}\Rightarrow\frac{DG}{4}=\frac{1}{3}\Rightarrow DG=\frac{4}{3}cm\)

Xét tam giác DGB vuông tại D

có: \(DG^2+BD^2=BG^2\left(py-ta-go\right)\)

thay số: \(\left(\frac{4}{3}\right)^2+3^2=BG^2\)

                                \(BG^2=\frac{97}{9}\)

                               \(\Rightarrow BG=\sqrt{\frac{97}{9}}cm\)

mk ko bít kẻ hình trên này, sorry bn nhiều nhé!

17 tháng 5 2018

Hình:

A D B C E F G 5 6

Giải:

a) Ta có: \(AC< BC\left(5< 6\right)\)

\(\Leftrightarrow\widehat{ABC}< \widehat{BAC}\) (Quan hệ giữa cạnh và góc đối diện)

b) Xét tam giác ABD và tam giác ACD, có:

AD là cạnh chung

\(\widehat{ABD}=\widehat{ACD}\) (Tam giác ABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\) (AD là tia phân giác góc A)

\(\Rightarrow\Delta ABD=\Delta ACD\left(g.c.g\right)\)

c) Ta có tam giác ABC cân tại A có AD là phân giác

Suy ra AD đồng thời là đường trung tuyến của tam giác ABC

Mà AD cắt CE tại G

=> G là trọng tâm của tam giác ABC

=> CG là đường trung tuyến thứ ba của tam giác ABC

Măt khác CG cắt AB tại F

Nên F là trung điểm của AB

d) Không thể tính BG nếu đề bài chỉ cho dữ kiện như vậy, kết luận đề thiếu hoặc sai đề câu d, nếu đúng phải là tính AG hoặc GD.

17 tháng 5 2018

Câu d đúng đề bạn ơi. Mk chỉ ko biết làm câu d thôi, chứ mấy câu khác mk biết òi hihi

27 tháng 1 2018

A D B C

Đề có sai hay thiếu j k?

1) Cho \(\Delta ABC\) cân tại A, có AB = AC = 5cm, BC = 8cm. Kẻ \(AH\perp BC\) ( \(H\in BC\) ). a) C/m: HB = HC và \(\widehat{BAH}=\widehat{CAH}\) b) TÍnh AH. c) Gọi D và E là chân đường phân giác kẻ từ H đến AB. C/m: \(\Delta HDE\) cân. 2) Cho \(\Delta ABC\) có \(\widehat{B}\) = 90 độ, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = AM. CMR: a) \(\Delta ABM=\Delta ECM\). b) AC > CE. c)...
Đọc tiếp

1) Cho \(\Delta ABC\) cân tại A, có AB = AC = 5cm, BC = 8cm. Kẻ \(AH\perp BC\) ( \(H\in BC\) ).

a) C/m: HB = HC và \(\widehat{BAH}=\widehat{CAH}\)

b) TÍnh AH.

c) Gọi D và E là chân đường phân giác kẻ từ H đến AB. C/m: \(\Delta HDE\) cân.

2) Cho \(\Delta ABC\) có \(\widehat{B}\) = 90 độ, vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME = AM. CMR:

a) \(\Delta ABM=\Delta ECM\).

b) AC > CE.

c) \(\widehat{BAM}>\widehat{MAC.}\)

3) Cho góc nhọn \(\widehat{xOy}\). Gọi M là 1 điểm thuộc tia phân giác \(\widehat{xOy}\), kẻ \(MA\perp Ox\left(A\in Ox\right)\), \(MB\perp Oy\left(B\in Oy\right)\).

a) CMR: MA = MB và \(\Delta OAB\) cân.

b) Đường thẳng BM cắt Ox tại D, đường thẳng AM cắt Oy tại E. CMR: MD = ME.

c) C/m: \(OM\perp DE\)

" hép mê " giải nhanh nha, mai mình cần gấp rùi ! Tuy hơi dài nhưng các bạn lm từng bài một cx đc !huhu

1

Câu 1: 

a: Ta có:ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác và H là trung điểm của BC

hay \(\widehat{BAH}=\widehat{CAH}\) và HB=HC

b: HB=HC=BC/2=4(cm)

nên AH=3(cm)

c: Sửa đề; D và E là chân đường cao kẻ từ H xuống AB và AC

Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔAHD=ΔAHE

Suy ra: HD=HE

hay ΔHDE cân tại H