K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Hình tự vẽ nha <3

Vẽ \(AH\)cắt \(BC\)tại \(K\)

Ta có: \(AK\perp BC\)

Gọi \(S\)(Khác \(D\)) là giao điểm của 2 đường trong \(O_1;O_2\)

Xét đường tròn \(O_1\)có: \(\widehat{SDB}=\widehat{SMC}\)

Ta có: \(\widehat{SMC}=\widehat{SNA}\Rightarrow AMSN\)nội tiếp.

Mặt khác:  \(\widehat{HMA}=\widehat{HNA}=90^0\Rightarrow AMHN\) nội tiếp

Vì vậy 5 điểm \(A,M,S,H,N\)cùng thuộc đường tròn.

\(\widehat{NSA}=\widehat{NHA}\)Mà \(\widehat{NHA}=\widehat{DBN}\Rightarrow\widehat{NSA}=\widehat{DBN}\)

Ta có: \(\widehat{NSA}+\widehat{DSN}=\widehat{DBN}+\widehat{DSN}=180^0\)

\(\Rightarrow A,D,S\)thằng hàng.

Ta lại có: \(\widehat{ASH}=\widehat{HMA}=90^0\Rightarrow HS\perp DA\)

Và: \(\widehat{PSD}=90^0\)(Góc nội tiếp chắn đường tròn)

\(\Rightarrow PS\perp DA\)

Và: \(\widehat{QSD}=90^0\)(Góc nội tiếp chắn đường tròn)

\(\Rightarrow QS\perp DA\)

Từ trên ta suy ra: Các đường thẳng \(SH;PS;QS\)trùng nhau.

\(\Rightarrow P,H,Q\)thằng hàng (đpcm)

11 tháng 10 2019

a, MPHQ là hình chữ nhật => MH = PQ

b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA

c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của  O 2

Tương tự PQ cũng là tiếp tuyến ( O 1 )

26 tháng 1 2018

Không ai trả lời không có nghĩa là mày  được spam, ok ?

26 tháng 1 2018

If mày định trình bày một idea nào đó, mày should dùng brain của mày 

14 tháng 7 2020

a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.

Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)

Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)

Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)

Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)

b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)

Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\)\(\Delta O_2OO_1\)vuông cân tại \(O_2\)

Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)

.Vậy diện tích \(\Delta O_2OO_1\)  là\(\frac{5R^2}{8}\)