K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

A B M C O O 1 2 O I E D N

a) Có ^AO1O2 = ^AO1M/2 = 1/2.Sđ(AM của (O1= ^ABM = ^ABC. Tương tự ^AO2O1 = ^ACB

Suy ra \(\Delta\)AO1O2 ~ \(\Delta\)ABC (g.g) (đpcm).

b) Từ câu a ta có \(\Delta\)AO1O2 ~ \(\Delta\)ABC. Hai tam giác này có đường trung tuyến tương ứng AO,AI

Khi đó \(\Delta\)AOO1 ~ \(\Delta\)AIB (c.g.c) => \(\frac{AO}{AO_1}=\frac{AI}{AB}\). Đồng thời ^OAI = ^O1AB 

=> \(\Delta\)AOI ~ \(\Delta\)AO1B (c.g.c). Mà \(\Delta\)AO1B cân tại O1 nên \(\Delta\)AOI cân tại O (đpcm).

c) Xét đường tròn (O1): ^DAM nội tiếp, ^DAM = 900 => DM là đường kính của (O1)

=> ^DBM = 900 => DB vuông góc với BC. Tương tự EC vuông góc với BC

Do vậy BD // MN // CE. Bằng hệ quả ĐL Thales, dễ suy ra \(\frac{ND}{NE}=\frac{MB}{MC}\)(1)

Áp dụng ĐL đường phân giác trong tam giác ta có \(\frac{MB}{MC}=\frac{AB}{AC}\)(2)

Từ (1) và (2) suy ra \(\frac{ND}{NE}=\frac{AB}{AC}\)=> ND.AC = NE.AB (đpcm).

Cho đường tròn (O) có dây cung BC khác đường kính. Trên (O) lấy điểm A sao cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Vẽ đường kính AA1 của (O). Gọi K là giao điểm thứ hai của đường thẳng AH và (O). 1. C/ m D là trung điểm củ HK2. Lấy điểm P đối xứng với điểm K qua đường thẳng AB. Chứng minh tứ giác AHBP nội tiếp được đường tròn 3. Gọi M là trung điểm của BC, Q...
Đọc tiếp

Cho đường tròn (O) có dây cung BC khác đường kính. Trên (O) lấy điểm A sao cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Vẽ đường kính AA1 của (O). Gọi K là giao điểm thứ hai của đường thẳng AH và (O). 

1. C/ m D là trung điểm củ HK

2. Lấy điểm P đối xứng với điểm K qua đường thẳng AB. Chứng minh tứ giác AHBP nội tiếp được đường tròn 

3. Gọi M là trung điểm của BC, Q là giao điểm của (O) và tia MH. Gọi T là giao điểm của đường thẳng QD và (O). C/m BT.AC=AB.CT

4. Kẻ đường kính A1A2 của đường tròn ngoại tiếp tam giác A1EF. CMR khi BC cố định, điểm A thay đổi trên (O) sao cho tam giác ABC nhọn (không cân tại A) thì đường thẳng A2H luôn đi qua một điểm cố định

Giúp mình hai câu cuối với!

0
28 tháng 1 2017

CAI NAY mk chua hoc xl ban ,chuc ban nam ms vv hp bên gia đinh nhe ////

3 tháng 3 2019

O O E B A 1 2 M J C F I x K N

a) Gọi AM cắt (O2) tại N khác M. Khi đó: Dễ thấy: ^MFE=^MNE = ^MO2E/2 = ^MO1J/2 = ^MAJ

=> ^MFI = ^MCI (Do ^MAJ = ^MCI) => Tứ giác MCFI nội tiếp => ^JAM = ^MCI = ^MFI = ^MEB hay ^JAM = ^JEA

Từ đó: \(\Delta\)JAM ~ \(\Delta\)JEA (g.g) => JA2 = JM.JE (1)

Ta có: ^JIM = ^CIM = ^CFM = ^FEM => \(\Delta\)JIM ~ \(\Delta\)JEI (g.g) => IJ2 = JM.JE (2)

Từ (1);(2) suy ra: JA2 = IJ2 = JM.JE => \(JA=IJ=\sqrt{JM.JE}\) (đpcm).

b) Gọi Cx là tia đối tia CA. Ta có đẳng thức về góc: ^ICx = ^JCA = ^JMA = ^JAB (Vì \(\Delta\)JAM ~ \(\Delta\)JEA)

=> ^ICx = ^JAB = ^ICB => CI là tia phân giác ^BCx hay CI là tia phân giác ngoài tại C của \(\Delta\)ABC (đpcm).

c) Ta thấy: \(\Delta\)IKC ~ \(\Delta\)IJA, JA = JI (cmt) => KI = KC (3)

Theo câu b thì ^JAB = ^JCA = ^JBA => \(\Delta\)ABJ cân tại J => JA = JB = JI => \(\Delta\)IJB cân tại J

=> ^CBI = ^JBI - ^JBC = (1800 - ^IJB)/2 - ^JBC = (1800 - ^IJB - 2.^JBC)/2 = (1800 - ^BAJ - ^JBC)/2

= (^ACB + ^JBA - ^JAC)/2 = (^ACB + ^BAC)/2 => BI là phân giác ^CBE.

Từ đó I là tâm bàng tiếp ứng đỉnh A của \(\Delta\)ABC => AI là phân giác ^BAC

Do vậy, K là điểm chính giữa cung BC không chứa A của (O1) => KC = KB (4)

Từ (3);(4) suy ra: KB = KC = KI => K là tâm ngoại tiếp \(\Delta\)BCI (đpcm).

23 tháng 8 2015

Đề bài bị thừa hai điểm M,N nhé bạn.

Gọi X,Y tương ứng là tiếp điểm của hai đường tròn \(\left(O_1\right),\left(O_2\right)\)  với \(BC\). Ta có \(\Delta O_1XH\sim\Delta O_2YH\) (cùng là tam giác vuông cân). Suy ra \(\frac{O_1H}{O_2H}=\frac{r_1}{r_2}\) với \(r_1,r_2\) tương ứng là bán kính đường tròn nội tiếp hai tam giác \(\Delta AHB,\Delta CHA.\)\(\Delta AHB\sim\Delta CHA\)  nên \(\frac{r_1}{r_2}=\frac{AB}{CA}\to\frac{O_1H}{O_2H}=\frac{AB}{CA}\to\Delta O_1HO_2\sim\Delta BAC\)  (c.g.c). Suy ra \(\angle ABC+\angle HO_2O_1=90^{\circ}.\)

Đến đây ta có \(\angle CO_2O_1+\angle O_1BC=\angle HO_2C+\angle HO_2O_1+\angle O_1BC\)

\(=180^{\circ}-\frac{\angle AHC+\angle ACH}{2}+\angle HO_2O_1+\angle O_1BC=180^{\circ}-\frac{180^{\circ}-\angle HAC}{2}+\angle HO_2O_1+\angle O_1BC\)

\(=90^{\circ}+\angle HO_2O_1+\angle ABC=180^{\circ}.\)

Vậy tứ giác \(BCO_1O_2\) nội tiếp.

13 tháng 11 2018

Dễ c/m đc: \(\Delta AHB~\Delta DOE\)

=>  \(\frac{AB}{DE}=\frac{AH}{OD}=\frac{GH}{OE}=\frac{1}{2}\)

Gọi K là trung điểm AH 

Dễ c.m: AODK là hình bình hành

=> DK = OA = R

Xét tam giác ODA1:  \(OA_1^2=OD^2+DA_1^2=OD^2+DH^2=\frac{1}{2}\left(OH^2+DK^2\right)=\frac{1}{2}\left(OH^2+R^2\right)\)

MỌI NGƯỜI GIÚP MK Ý CHỨNG MINH DƯỚI ĐÂY:

Chứng minh:    \(OB_1^2=OB_2^2=\frac{1}{2}\left(OH^2+R^2\right);\)\(OC_1^2+OC_2^2=\frac{1}{2}\left(OH^2+R^2\right)\)