Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
Suy ra: AB//KC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
a) Xét tam giác ABD và tam giác AED có :
AB = AE ( gt )
góc BAD = góc EAD ( gt )
AD chung
=> tam giác ABD = tam giác AED ( c-g-c )
=> BD = DE ( 2 c.t.ứ )
=> đpcm
b) Để tam giác ADB = tam giác ADC thì AB = AC
=> tam giác ABC cân tại A
c) Để DE vuông góc với AC thì góc AED = 900
Mặt khác ta có : góc ABD = góc AED ( vì tam giác ABD = tam giác AED ) = 900
=> AB vuông góc với BC
=> tam giác ABC vuông tại B
Bạn tự vẽ hình và GT;KL nhé!
Xét tam giác ABD và tam giác ADE có:
AB=AE(gt)
\(\widehat{BAD}=\widehat{DAE}\)(AD là tia phân giác góc BAC)
AD chung
Suy ra tam giác ABD= tam giác AED(c.g.c)
suy ra DB=DE(2 cạnh tương ứng)
b) Tam giác ABC cân tại A(vì khi đó E trùng C nên từ tam giác ABD= tam giác AED ta có tam giác ADB = tam giác ADC)
c) Để DE vuông góc AC thì góc AED=90 độ mà tam giác ABD= tam giác AED nên góc ABD= góc AED=90 độ hay tam giác ABC vuông tại B
Chúc bạn học tốt!
a: Xét ΔBCD vuông tại C và ΔBMD vuông tại M có
BD chung
\(\widehat{CBD}=\widehat{MBD}\)
Do đó: ΔBCD=ΔBMD
b: Ta có: ΔBCD=ΔBMD
=>BC=BM và DC=DM
Xét ΔBCM có BC=BM và \(\widehat{CBM}=60^0\)
nên ΔBCM đều
Ta có: BD là phân giác của góc CBA
=>\(\widehat{CBD}=\widehat{DBA}=\dfrac{\widehat{CBA}}{2}=\dfrac{60^0}{2}=30^0\)
Ta có: ΔBCA vuông tại C
=>\(\widehat{CBA}+\widehat{CAB}=90^0\)
=>\(\widehat{CAB}=90^0-60^0=30^0\)
Xét ΔDBA có \(\widehat{DAB}=\widehat{DBA}\left(=30^0\right)\)
nên ΔDAB cân tại D
c: Xét ΔDCK vuông tại C và ΔDMA vuông tại M có
DC=DM
CK=MA
Do đó: ΔDCK=ΔDMA
=>DK=DA
=>ΔDKA cân tại D
Ta có: BC+CK=BK
BM+MA=BA
mà BC=BM và CK=MA
nên BK=BA
=>ΔBKA cân tại B