K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2024

loading... 

a) ∆ABC vuông tại B (gt)

⇒ AB ⊥ BC

⇒ BM ⊥ BF

⇒ ∠MBF = 90⁰

Do EM // BC (gt)

⇒ EM // BF

EM // BC (gt)

E là trung điểm của AC (gt)

⇒ M là trung điểm của AB

⇒ EM là đường trung bình của ∆ABC

⇒ EM = BC : 2

F là trung điểm của BC (gt)

⇒ BF = CF = BC : 2

⇒ EM = BF = BC : 2

Tứ giác BMEF có:

EM // BF (cmt)

EM = BF = BC : 2 (cmt)

⇒ BMEF là hình bình hành

Mà ∠MBF = 90⁰ (cmt)

⇒ BMEF là hình chữ nhật

b) Do K đối xứng với B qua E (gt)

⇒ E là trung điểm của BK

Tứ giác BAKC có:

E là trung điểm của BK (cmt)

E là trung điểm của AC (gt)

⇒ BAKC là hình bình hành

Mà ∠ABC = 90⁰ (gt)

⇒ BAKC là hình chữ nhật

c) Do G đối xứng với E qua F (gt)

⇒ F là trung điểm của EG

∆ABC vuông tại B (gt)

E là trung điểm của AC (gt)

⇒ BE là đường trung tuyến ứng với cạnh huyền AC

⇒ BE = CE = AC : 2

Tứ giác BGCE có:

F là trung điểm của BC (gt)

F là trung điểm của EG (cmt)

⇒ BGCE là hình bình hành

Mà BE = CE (cmt)

⇒ BGCE là hình thoi

d) Để BGCE là hình vuông thì BE ⊥ CE

⇒ BE là đường cao của ∆ABC

Mà BE là đường trung tuyến của ∆ABC (cmt)

⇒ ∆ABC cân tại B

Lại có ∆ABC vuông tại B (gt)

⇒ ∆ABC vuông cân tại B

18 tháng 9 2021

\(a,\left\{{}\begin{matrix}BF=CF\\CE=EA\end{matrix}\right.\Rightarrow EF\) là đtb tam giác ABC

\(\Rightarrow EF=\dfrac{1}{2}AB;EF//AB\Rightarrow EF//BM\)

Mà \(ME//BF\) nên BMEF là hbh

Mà \(\widehat{ABC}=90^0\) nên BMEF là hcn

\(b,\left\{{}\begin{matrix}BE=EK\\AE=EC\\\widehat{ABC}=90^0\end{matrix}\right.\Rightarrow BAKC\) là hcn

\(c,\left\{{}\begin{matrix}EF=FG\\CF=BF\end{matrix}\right.\Rightarrow BGCE\) là hbh

Mà \(CE=BE\left(t/c.hình.chữ.nhật.BAKC\right)\)

Vậy BGCE là hình thoi

\(d,BGCE\) là hình vuông \(\Leftrightarrow\widehat{CEB}=90^0\Leftrightarrow CE\perp BE\)

\(\Leftrightarrow BE\) là đường cao tam giác ABC

Mà BE là trung tuyến tam giác ABC

Do đó tam giác ABC phải vuông cân

Vậy BGCE là hình vuông \(\Leftrightarrow\) tam giác ABC vuông cân

a: Sửa đề: Ex//BC, Ex cắt AC tại M

a: Xét ΔABC có

E là trung điểm của BA

EM//BC

=>M là trung điểm của AC

Xét ΔCAB có

E,M lần lượt là trung điểm của AB,AC

=>EM là đường trung bình

=>EM=1/2BC

=>EM=BF

Xét tứ giác EMFB có

EM//FB

EM=FB

góc FBE=90 độ

Do đó: EMFB là hình chữ nhật

b: Sửa đề: K đối xứng B qua M

Xét tứ giác BAKC có

M là trung điểm chung của BK và AC

góc ABC=90 độ

=>BAKC là hình chữ nhật

c: Xét tứ giác BGCE có
F là trung điểm chung của BC và GE

=>BGCE là hình bình hành

1 tháng 11 2019

A F E D B C M

Mình vẽ hình hơi xâu, bạn thông cảm nhé!

a) Xét từ giác ABMC  có: + AM cắt BC tại D (bạn dùng ký hiệu giao nhé)

                                    + DA = DM (gt)

                                    + DB = DM(gt)

suy ra, tứ giác AMCM là hình bình hành mà ta có góc CAB là góc vuông suy ra tứ giác ABMC là hình chữ nhật

1 tháng 11 2019

Các câu còn lại bạn đầu có thể giải theo cách trên nhé! 

( e mk chưa làm đc, mk mới đc học đến bào hình chữ nhật thôi, sory)

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc 

7 tháng 1 2022

Answer:

Mình chỉ biết làm a, b còn c, d mình không biết. Bạn thông cảm ạ.

undefineda. Có: DM vuông góc với AC; DN vuông góc với BC; AC vuông góc với BC

=> CMDN là hình chữ nhật

b. Xét tam giác abc VUÔNG TẠI a:

D là trung điểm AB

=> CD là đường trung tuyến

=> CD = DB = AD

=> Tam giác CDB cân tại D

Mà DN vuông góc với BC

=> DN là đường cao và cũng là trung tuyến

=> CN = NB

Xét tứ giác DCEB:

CN = NB

DN = NE

Mà DE vuông góc BC

=> Tứ giác DCEB là hình thoi.

DD
8 tháng 1 2022

c) Xét tam giác \(ABC\)vuông tại \(C\)có: 

\(AB^2=AC^2+BC^2\)(định lí Pythagore) 

\(\Leftrightarrow AC^2=AB^2-BC^2=10^2-6^2=64=8^2\)

suy ra \(AC=8\left(cm\right)\).

 \(DM\)vuông góc với \(AC\)mà \(AB\perp AC\)suy  ra \(DM//AB\)

mà ta lại có \(D\)là trung điểm của \(AB\)

nên \(DM\)là đường trung bình của tam giác \(ABC\).

Suy ra \(DM=\frac{1}{2}BC=\frac{1}{2}.6=3\left(cm\right)\)

Tương tự ta cũng suy ra \(DN=\frac{1}{2}AC=4\left(cm\right)\).

\(S_{CMDN}=DM.DN=3.4=12\left(cm^2\right)\).

d) 

Có \(CDBE\)là hình thoi nên để \(CDBE\)là hình vuông thì \(CD\perp BE\).

Xét tam giác \(ABC\)có \(D\)là trung điểm \(AB\)mà \(CD\perp BE\)nên tam giác \(ABC\)cân tại \(C\).

Vậy tam giác \(ABC\)vuông cân tại \(C\).