K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:
Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13$ (cm)

Xét tam giác $BAH$ và $BCA$ có:
$\widehat{B}$ chung

$\widehat{BHA}=\widehat{BAC}=90^0$

$\Rightarrow \triangle BAH\sim \triangle BCA$ (g.g)

$\Rightarrow \frac{BA}{BH}=\frac{BC}{BA}$

$\Rightarrow AB^2=BH.BC$ 

Theo tính chất về tia phân giác ta có:

$\frac{AE}{EC}=\frac{AB}{BC}=\frac{5}{13}$

$\Rightarrow \frac{AE}{AC}=\frac{5}{18}$
$\Rightarrow AE=\frac{5}{18}.AC=\frac{5}{18}.12=\frac{10}{3}$ (cm)

$CE=AC-AE=12-\frac{10}{3}=\frac{26}{3}$ (cm)

 

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Hình vẽ:

a: Đề sai rồi bạn

b: BC=căn 8^2+6^2=10cm

S ABC=1/2*AB*AC=24cm2
Xét ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

=>BA/BC=BH/BA=6/10=3/5 và S BAH/S BCA=(3/5)^2=9/25

=>DH/DA=3/5

=>HD/HA=3/8

=>S BHD=3/8*S HBA=3/8*9/25*S BCA=27/200*S BCA

a: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BE là phân giác

=>AE/AB=CE/BC

=>AE/3=CE/5=16/8=2

=>AE=6cm; CE=10cm

b: Xet ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA
=>ΔHAB đồng dạng vơi ΔHCA
c: ΔABC vuông tại A

mà AH là đường cao

nên BA^2=BH*BC

b: BH=19,2cm

AH=14,4cm

a: BC=căn 9^2+12^2=15cm

AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

AH=9*12/15=108/15=7,2cm

b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có

góc HCA=góc MAE

=>ΔHAC đồng dạng với ΔMEA

19 tháng 4 2021

19 tháng 4 2021

a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao 

AB^2 + AC^2 = BC^2

=> BC^2 = 36 + 64 = 100 => BC = 10 cm 

Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)

mà DC = BC - BD = 10 - BD 

hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm 

=> DC = 10 - BD = 10 - 30/7 = 40/7 cm 

b, Xét tam giác ABC và tam giác AHB ta có : 

^BAC = ^AHB = 900

^B chung 

Vậy tam giác ABC ~ tam giác AHB ( g.g )

 

2 tháng 4 2017

tau lop 9 may la thang may nao 

2 tháng 4 2017

ket ban voi minh nha 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

c: ΔABC đồng dạng với ΔHBA

ΔABC đồng dạng với ΔHAC

=>ΔHBA đồng dạng với ΔHAC

d: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB

17 tháng 4 2022

xét tam giác AHB và tam giác CAB có:

góc H = góc A = 90 độ

góc B chung

=> tam giác AHB ~ tam giác CAB

=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)

=> AB2= BH.BC