Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và tam giác HBA
B là góc chung
Góc BAC=góc AHB= 90o
=> tam giác ABC đồng dạng tam giác HBA( g.g)
b) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A, ta có
BC2=AC2+AB2
BC2=82+62
BC2=1002=10cm
Xét ta
Mình bổ sung nha:
b) Xét tam giác AHB và tam giác ABC có:
Góc BAC = Góc BHA = 900
Góc B chung
Suy ra tam giác AHB đồng dạng tam giác CAB(g.g)
Suy ra AH/AC = AB/BC
Hay AH/8 = 6/10
Suy ra AH= 8*6/10 = 48/10 = 4,8 (cm)
c) Trong tam giác ABH vuông tại H, nên theo định lý Py- ta go ta có:
AB^2= AH^2+BH^2
Suy ra : BH^2= AB^2 - AH^2= \(\sqrt{6^2-4,8^2}=\sqrt{36-23,04=\sqrt{12,96}}\)
Suy ra BH= 3,6 (cm)
Ta có C ABC / C HBA = AB+AC+BC / AB+AH+BH = (6+8+10 )/ (6+4,8+3,6)=24/14,4=5/3
Vậy C ABC/ C HBA = 5/3
Không mất tính tổng quát
g/s: BH=9m , CH=16m
Ta có: BC=BH+HC=25m
Xét tam giác ABC vuông tại A
=> \(AB^2+AC^2=BC^2=625\)
Xét tam giác ABH và ACH vuông tại H có: \(AB^2=AH^2+BH^2=AC^2-CH^2+BH^2\)=> \(AB^2=AC^2-16^2+9^2=AC^2-175\)
=> \(AC^2-175+AC^2=625\Rightarrow AC^2=400\Rightarrow AC=20\)m
=> \(AB^2=AC^2-175=225\Rightarrow AC=15\)m
Chu vi= 15+20+25=60 m
Bài 1 Giải
Chu vi HCN là:
(12+8).2= 40(cm)
Diện tích HCN là:
12.8= 96(cm)
Bài 2 Chu vi hình vuông là:
20.4=80(cm)
Mà chu vi hình vuông bằng chu vi HCN nên:
Chiều rộng HCN là:
(80:2) -25=15(cm)
Diện tích HCN là:
15.25=375(cm)
Bài 3 Độ dài cạnh BC là:
120:10.2=24(cm)
Bài 4 Diện tích tam giác ABC là:
( 5.8):2 = 20(cm)
Chúc bn hok tốt~~
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
a) Vì tam giác ABC là tam giác vuông
=> Theo đ/lí Py-ta-go => BC^2=AB^2+AB^2=6^28^2=100
a/Tg ABC vuông nên BC2 = AB2+ AC2 = 82 +62 = 100 => BC = 10
Vậy Chu vi tg ABC = AB+ AC + BC = 8 + 6 + 10 = 14,
b/ Tg ABC đong dạng tg HAC vì 2tg đều vuông mà có chung góc nhọn ^C.
c/ Tính DB và DC:
THeo định lý đường phân giác trong tg ta có \(\frac{DB}{AB}=\frac{DC}{AC}=\frac{DB+DC}{AB+AC}=\frac{10}{14}=\frac{5}{7}\)
=> \(\frac{BD}{AB}=\frac{5}{7}\Rightarrow BD=\frac{AB.5}{7}=\frac{8.5}{7}=\frac{40}{7}\)
Tương tự \(\frac{DC}{AC}=\frac{5}{7}=>DC=\frac{AC.5}{7}=\frac{6.5}{7}=\frac{30}{7}\)