Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ:
a)Vì BE là tpg của ^ABC(gt)
=>^ABE=^EBH(=^EBC)
Xét tam giác ABE vuông ở A và tam giác HBE vuông ở H có:
BE:cạnh chung
^ABE=^EBH(cmt)
=>tam giác ABE=tam giác HBE(ch-gn)
b)Vì tam giác ABE=tam giác HBE(cmt)
=>AB=HB(cặp cạnh t.ư)
Xét tam giác ABH có:AB=HB(cmt)
=>tam giác ABH cân ở B(DHNB0
Xét tam giác ABH cân ở B có:AE là tpg của ^ABH(vì AE là tpg của ^ABC)
=>BE là đg trung trực của AH (t/c tam giác cân)
c)Vì tam giác ABE=tam giác HBE(cmt)
=>AE=HE(cặp cạnh t.ư)
Ta có:EC>EH (trong tam giác vuông,cạnh huyền là cạnh lớn nhất)
Mà AE=HE(cmt)
=>EC>AE
xem lại chỗ đâm nhé
Cho tam giác ABC ở phía ngoài tam giác vẽ các tam giác vuông tại A đó là tam giác ABD và tam giác ACE sao cho AB = AC và AC = AE . Kẻ AH vuông góc BC . Gọi I là giao điểm của HA và DE . Chứng minh DI = IE
a: BC=13cm
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
c: Xét ΔNHA và ΔNIC có
NH=NI
\(\widehat{HNA}=\widehat{INC}\)
NA=NC
Do đó: ΔNHA=ΔNIC
Xét tam giác ABM và tam giác ACM có
AB = AC (gt)
AM là cạnh chung
BM = MC ( gt )
\(\Rightarrow\) Tam giác ABM bằng tam giác ACM ( c.c.c)
a) \(BC.AH=AB.AC=6.8=48cm^2\) (bằng 2 lần diện tích ABC).
b) HAB và HAC là 2 tam giác vuông có \(\stackrel\frown{HBA}=\widehat{HAC}\) (cùng phụ với \(\widehat{BCA}\)) nên HAB đồng dạng với HAC. Từ đó \(\dfrac{HB}{AH}=\dfrac{AH}{HC}\Rightarrow HB.HC=AH^2\) (đây là hệ thức lượng quen thuộc trong tam giác vuông: đường cao thuộc cạnh huyền bằng trung bình nhân của hai cạnh góc vuông)
c) Áp dụng Pitago ta có \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10cm\). Từ đó \(BE=BCV-CE=10-4=6cm=BA\).
Ta có \(BE^2=BA^2=BH.BC\) (chứ không phải là \(BH.CH\) nhé).
d) Không biết là bạn cần tính gì? Nếu là cần tính diện tích của tam giác CED thì có thể làm như sau:
Áp dụng tính chất phân giác có \(\dfrac{CD}{AD}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{CD}{CA}=\dfrac{CD}{CD+AD}=\dfrac{5}{3+5}=\dfrac{5}{8}\)
\(\dfrac{dt_{CED}}{dt_{CAB}}=\dfrac{CE}{CB}.\dfrac{CD}{CA}=\dfrac{4}{10}.\dfrac{5}{8}=\dfrac{1}{4}\), do đó \(dt_{CED}=\dfrac{1}{4}dt_{ABC}=\dfrac{1}{4}.\dfrac{1}{2}.6.8=6cm^2\)
Tại sao (diện tích tam giác ced / diện tích tam giác cab) =ce/cb*cd/ca
Từ $I$ kẻ \(IM\perp DA, IN\perp AE\)
Ta có: \(\left\{\begin{matrix} \widehat{IAM}-90^0-\widehat{BAH}=\widehat{ABH}\\ \widehat{AMI}=\widehat{AHB}=90^0\end{matrix}\right.\Rightarrow \triangle IAM\sim \triangle ABH\)
\(\Rightarrow\frac{IM}{AH}=\frac{IA}{AB}\) $(1)$. Tương tự : \(\Rightarrow \triangle IAN\sim \triangle ACH\Rightarrow \frac{IN}{AH}=\frac{IA}{AC}(2)\)
Từ \((1)(2)\Rightarrow \frac{IM}{IN}=\frac{AC}{AB}=\frac{AE}{AD}\).
Do đó, \(\frac{S_{DIA}}{S_{EIA}}=\frac{IM.AD}{IN.AE}=1\Rightarrow S_{DIA}=S_{EIA}\Rightarrow ID=IE\) (đpcm)
Giả sử BC+AH>AB+AC
<=>BC^2+AH^2+2BC.AH>AB^2+AC^2+2AB.AC
<=>BC^2+AH^2+2AB.AC>AB^2+AC^2+2AB.AC (hệ thức lượng)
<=>BC^2+AH^2>BC^2(py-ta-go)
<=>AH^2>0 (luôn đúng )
=>điều cần c/m
ʌ dấu này có nghĩa là gì