K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016
minh chi goi y cho ban thoi nha neu noi Dvoi E ta se duoc tam giac ADE.ban phai chung minh cho gocE bang 90 do sau do di xet hai tam giac ABD vaAED nho k cho minh nhe
12 tháng 2 2016

moi hok lop 6

12 tháng 2 2016

mk cũng lớp 6

 

22 tháng 11 2017

A B C E D I

a) Xét tam giác ABD và EBD có:

BA = BE (gt)

\(\widehat{ABD}=\widehat{EBD}\) (Do BD là tia phân giác góc B)

BD chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)

\(\Rightarrow AD=ED\) (Hai cạnh tương ứng)

b)  Do \(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)

Xét tam giác vuông ABC ta có \(\widehat{ABC}=90^o-\widehat{ACB}\)

Xét tam giác vuông DEC ta có \(\widehat{EDC}=90^o-\widehat{ACB}\)

Vậy nên \(\widehat{EDC}=\widehat{ABC}\)

c) Gọi giao điểm của AE và BD là I.

Xét tam giác ABI và tam giác EBI có:

AB = EB (gt)

\(\widehat{ABI}=\widehat{EBI}\)

BD chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c-g-c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{EIB}\) (Hai góc tương ứng)

Mà chúng lại ở vị trí kề bù nên \(\widehat{AIB}=\widehat{EIB}=90^o\)

Vậy nên \(AE\perp BD\)

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

Suy ra: DA=DE(hai cạnh tương ứng) và \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(gt)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC

Ta có: DA=DE(cmt)

mà DE<DC(ΔDEC vuông tại E có DC là cạnh huyền)

nên DA<DC

b) Ta có: ΔBAC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(1)

Ta có: ΔEDC vuông tại E(cmt)

nên \(\widehat{EDC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{EDC}\)(đpcm)

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BD là đường trung trực của AE

hay BD\(\perp\)AE(đpcm)

23 tháng 11 2016

Ta có hình vẽ:

A B C D E H

a) Vì BD là phân giác của ABC nên ABD = CBD

Xét Δ ABD và Δ EBD có:

BA = BE (gt)

ABD = EBD (cmt)

BD là cạnh chung

Do đó, Δ ABD = Δ EBD (c.g.c)

=> AD = DE (2 cạnh tương ứng) (đpcm)

b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)

=> Δ DEC vuông tại E

Δ ABC vuông tại A có: ABC + C = 90o (1)

Δ CED vuông tại E có: EDC + C = 90o (2)

Từ (1) và (2) => ABC = EDC (đpcm)

c) Gọi giao điểm của AE và BD là H

Xét Δ ABH và Δ EBH có:

AB = BE (gt)

ABH = EBH (câu a)

BH là cạnh chung

Do đó, Δ ABH = Δ EBH (c.g.c)

=> BHA = BHE (2 góc tương ứng)

Mà BHA + BHE = 180o (kề bù) nên BHA = BHE = 90o

=> \(BH\perp AE\) hay \(BD\perp AE\left(đpcm\right)\)

5 tháng 12 2016

học ngu vl

bucminh

DD
20 tháng 7 2021

a) Xét tam giác \(ABD\)và tam giác \(EBD\)có: 

\(AB=EB\)

\(\widehat{ABD}=\widehat{EBD}\)

\(BD\)cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEB}=\widehat{DAB}=90^o\)

do đó \(DE\perp BC\).

\(DE=DA\Rightarrow D\)thuộc đường trung trực của \(AE\).

\(BA=BE\)suy ra \(B\)thuộc đường trung trực của \(AE\).

Do đó \(BD\)là đường trung trực của \(AE\)nên \(AE\)vuông góc với \(BD\).

b) \(AD=DE< DC\)(cạnh góc vuông nhỏ hơn cạnh huyền) 

c) Xét tam giác \(ADF\)và tam giác \(EDC\)có: 

\(DA=DE\)

\(CE=FA\)

\(\widehat{DAF}=\widehat{DEC}\left(=90^o\right)\)

\(\Rightarrow\Delta ADF=\Delta EDC\left(c.g.c\right)\)

d) \(\Delta ADF=\Delta EDC\)suy ra \(\widehat{CDE}=\widehat{ADF}\)mà hai góc này ở vị trí đối đỉnh nên \(E,D,F\)thẳng hàng.