K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

B A C K I D

a) Xét tam giác BAD và tam giác BHD có :

\(\widehat{BAD}=\widehat{BHD}=90^o\)

BD chung

\(\widehat{ABD}=\widehat{HBD}\) (Do BD là phân giác)

\(\Rightarrow\Delta BAD=\Delta BHD\) (Cạnh huyền góc nhọn)

\(\Rightarrow AB=HB\)

Ta cũng có \(\Delta BAD=\Delta BHD\) nên AD = HD.

Xét tam giác ADK và tam giác HDC có:

\(\widehat{KAD}=\widehat{CHD}=90^o\)

AD = HD

\(\widehat{ADK}=\widehat{HDC}\) (Hai góc đối đỉnh)

\(\Rightarrow\Delta ADK=\Delta HDC\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow AK=HC\)

b) (Cô làm theo cách khi chưa học về các đường đồng quy trong tam giác)

Kéo dài BD cắt KC tại I.

Ta thấy BK = BA + AK = BH + HC = BC

 Xét tam giác BKI và tam giác BCI có :

\(\widehat{KBI}=\widehat{CBI}\)

BI chung

BK = BC (CMT)

\(\Rightarrow\Delta BKI=\Delta BCI\) (c-g-c)

\(\Rightarrow\widehat{BIK}=\widehat{BIC}\)  (Hai góc tương ứng)

Mà chúng lại là hai góc kề bù nên \(\widehat{BIK}=\widehat{BIC}=90^o\)

Vậy nên BD vuông góc KC.

c) Xét tam giác ABH có BA = BH nên nó là tam giác cân.

Vậy BD là phân giác thì đồng thời nó là đường cao.

Vậy BD vuông góc AH.

Lại có BD vuông góc KC nên AH // KC.

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH

b: Ta có: ΔBAD=ΔBHD

nên DA=DH

hay D nằm trên đường trung trực của AH(1)

Ta có: BA=BH

nên B nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH

hay BD⊥AH

12 tháng 2 2022

Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)

c) Xét tam giác ECK và tam giác ECA có:

EKC=EAC=90

EC cạnh chung

ECK=ECA ( vì CE là p/g của ABC)

=>Tam giác ECK=Tam giác ECA ( ch-gn)

=>CK=CA( 2 cạnh tương ứng)

Mà AB=HB( chứng minh a)

=>CK+BH=CA+AB

=>CH+KH+BK+HK=AC+AB

=>(BK+KH+CH)+HK=AC+AB

=>BC+HK=AB+AC (ĐPCM)

d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B

=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)

Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)

=\(\dfrac{360-90}{2}=135\)

=>BAK+2HAK+HAC=135

Mà BAK+HAC=BAC-HAK=90-HAK

=>90-HAK+2HAK=135

=>90+HAK=135

=>HAK=45

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔBAD=ΔBHD

c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: DK=DC và AK=HC

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 

A B C D H K

Xét tam giác ABD và tam giác HBD có:

BD: chung.

Góc BAD=BHD=90 độ.

Góc ABD=HBD(Phân giác BD)

=> Tam giác ABD=tam giác HBD(ch-gn)

b/ Gọi giao điểm của BD và AH là O.

Xét tam giác AOB và tam giác HOB có:

BO:chung.

Góc ABO=HBO(Phân giác BD)

BA-BH(cạnh tương ứng của tam giác BAD=BHD)

=>Tam giác AOB=tam giác HOB(c-g-c)

=> Góc AOB=HOB(góc tương ứng)=90 độ

Góc BAH=BKC(góc ứng với cạnh đáy của tam giác cân có cùng góc B)

=> AH//KC

Mà BD vuông góc với AH nên BD cũng vuông góc với KC.

c/Xét tam giác ADK và tam giác HDC có:

DA=DH(cạnh tương ứng của tam giác BAD=tam giác BHD)

Góc DAK=DHC=90 độ.

Góc ADK=HDC(đối đỉnh)

=> tam giác ADK=tam giác HDC(g-c-g)

=> DK=DC(cạnh tương ứng)

Mà trong tam giác vuông HDC có:

DC là cạnh huyền nên DC>DH

=> DK>DH(đpcm)

18 tháng 4 2020

B C D M H A E K N

a, Xét 2 tam giác vuông : ABM và DBM

BM chung

\(\widehat{ABM}=\widehat{DBM}\)( do BM là phân giác góc B )

\(\Rightarrow\Delta ABM=\Delta DBM\)( cạnh huyền - góc nhọn )

\(\Rightarrow BA=BD\)( 2 cạnh tương ứng )

b. Xét 2 tam giác vuông : ABC và DBE có :

BA = BD ( c/m ỏ câu a )

\(\widehat{B}\)chung

\(\Rightarrow\Delta ABC=\Delta DBE\)( cạnh góc vuông - góc nhọn )

c, Xét 2 tam giác vuông : AMK và DMH

AM = DM ( 2 cạnh tg ứng do ABM = DBM )

\(\widehat{AMK}=\widehat{DMH}\)( đối đỉnh )

\(\Rightarrow\Delta AMK=\Delta DMH\)( cạnh huyền - góc nhọn )

\(\Rightarrow MK=MH\)( 2 cạnh tg ứng )

Xét 2 tam giác vuông : MNK và MNH

MK = HM ( cmt )

MN chung

\(\Rightarrow\Delta MNK=\Delta MNH\)( cạnh huyền - góc vuông )

\(\Rightarrow\widehat{MNK}=\widehat{MNH}\)( 2 góc tg ứng )

=> NM là tia phân giác của \(\widehat{HMK}\)( đpcm ) (1)

d, Do AK = DH ( 2 cạnh tg ứng \(\Delta AMK=\Delta DMH\))

KN = HN ( 2 cạnh tg ứng \(\Delta MNK=\Delta MNH\))

\(\Rightarrow AN=AK+KN=DH+HN=DN\)

Xét 2 tam giác : ABN và DBN

AB = DB ( cmt )

BN chung 

AN = BN ( cmt )

\(\Rightarrow\Delta ABN=\Delta DBN\left(c-c-c\right)\)

\(\Rightarrow\widehat{ANB}=\widehat{DNB}\)( 2 góc tg ứng )

=> NB là tia phân giác \(\widehat{AND}\)( 2 )

Từ (1)(2) 

=> B , M , N thẳng hàng

1.Cho tam giác ABC vuông tại A có AB < AC. Tia phân giác của góc A cắt BC ở K. Từ B kẻ đường thẳng vuông góc với AK tại H và cắt AC ở D. Chứng minh:  a) HB = HD, KB = KD                                                                                          b) Tam giác ABD vuông cân tại A2.Cho góc xOy, kẻ tia phân giác Oz. Trên tia Ox lấy điểm B, trên tia Oy lấy điểm C sao cho OB = OC. Góc I là giao điểm của BC với tia Oz. Lấy điểm D là...
Đọc tiếp

1.Cho tam giác ABC vuông tại A có AB < AC. Tia phân giác của góc A cắt BC ở K. Từ B kẻ đường thẳng vuông góc với AK tại H và cắt AC ở D. Chứng minh:  a) HB = HD, KB = KD                                                                                          b) Tam giác ABD vuông cân tại A

2.Cho góc xOy, kẻ tia phân giác Oz. Trên tia Ox lấy điểm B, trên tia Oy lấy điểm C sao cho OB = OC. Góc I là giao điểm của BC với tia Oz. Lấy điểm D là nằm trên tia phân giác Oz ( D khác I )                                                                      a) Chứng minh Oz vuông góc với BC tại I                                                        b) Chứng minh tam giác DBC cân

3. Cho tam giác ABC, gọi N là trung điểm của cạnh BC. Trên tia đối của tia NA lấy điểm D sao cho ND = NA. Chứng minh: AB = CD và AB song song với CD

Dạ e cảm ơn ạ.

 

 

1

3:

Xét tứ giác ABDC có

N là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AB=CD: AB//CD