Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a, Do AM là đường trung tuyến ứng với cạnh huyền của ΔABC vuông tại A, nên
AM = BM = CM = BC/2 = 10/2 = 5 (cm)
b, Do D là điểm đối xứng của A qua M nên AD = 2AM = 2BM = BC.
Do tứ giác ABDC có hai đường chéo AD và BC bằng nhau, cắt nhau tại trung điểm mỗi đường nên ABDC là hình chữ nhật ( dấu hiệu nhận biết hình chữ nhật )
c, Hình chữ nhật ABDC là hình vuông ⇔ ∡BMA = 90º
⇔ AM ⊥ BC
ΔABC có AM vừa là đường cao, vừa là đường trung tuyến nên ΔABC là tam giác cân tại A, kết hợp với ∡A = 90º ⇒ ΔABC vuông cân tại A.
Vậy với ΔABC vuông cân tại A thì tứ giác ABDC là hình vuông.
a: Xét ΔABC có
N là trung điểm của BC
D là trung điểm của AC
Do đó: ND là đường trung bình của ΔABC
Suy ra: ND//AB
hay ND⊥AC
a,Xét tứ giác ABDC có:
D đối xứng với A qua M nên :
DA=DC(1)
M là trung điểm BC nên:
BM=MC(2)
Từ (1)và (2) suy ra:
tứ giác ABDC là hình chữ nhật(đpcm)
b, vì ABDC là hình chữ nhật nên:
AB=DC và AB//DC
mà DC=FC và F trên tia DC
=>AB=FC và AB//FC
vậy tứ giác ABCF là hình bình hành(đpcm)
a: Xét tứ giác AEMC có
ME//AC
ME=AC
Do đó: AEMC là hình bình hành
Xét tứ giác ANCM có
D là trung điểm của AC
D là trung điểm của NM
Do đó: ANCM là hình bình hành
mà AN=CN
nên ANCM là hình thoi
a: Xét tứ giác AIME có
\(\widehat{AIM}=\widehat{AEM}=\widehat{EAI}=90^0\)
Do đó: AIME là hình chữ nhật
b: Xét tứ giác ANCM có
I là trung điểm của AC
I là trung điểm của NM
Do đó: ANCM là hình bình hành
mà MA=MC
nên ANCM là hình thoi
c: Để AIME là hình vuông thì AI=AE
hay AB=AC
a) xét tứ giác ABDC có:
M là trung điểm của BC
M là trung điểm của AD (D đối xứng A qua M)
=> tứ giác ABDC là bình hành
xét hình bình hành ABDC có: \(\widehat{BAC}\)=90o
=> ABDC là hình chữ nhật
b) không hiểu lắm
a)
Ta có: MB = MC; MA = MD (gt)
⇒ Tứ giác ABDC là hình bình hành
Mà: ∠A = 90°
⇒ Tứ giác ABDC là hình chữ nhật (đpcm)
b)
Gọi O là giao điểm của AC và AE
ΔAED có: OA = OE (E đối xứng với A qua BC); MA = MD (gt)
⇒ OM là đường trung bình của ΔAED
⇒ OM // ED (1)
Vì: E đối xứng với A qua BC
⇒ BC là đường trung trực của AE
⇒ BC ⊥ AE hay OM ⊥ AE (2)
Từ (1), (2) ⇒ ED ⊥ AE (đpcm)
c)
Ta có: BC // ED (OM // ED)
⇒ Tứ giác BEDC là hình thang
Ta có: BD = AC (Tứ giác ABDC là hình chữ nhật) (a)
ΔAEC có: CO vừa là đường trung tuyến vừa là đường cao
⇒ ΔAEC cân tại C ⇒ CA = CE (b)
Từ (a), (b) ⇒ BD = EC
Hình thang BEDC có: BD = EC
⇒ Tứ giác BEDC là hình thang cân