K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

a) Xét 2 \(\Delta\) \(AIB\)\(CID\) có:

\(IB=ID\left(gt\right)\)

\(\widehat{AIB}=\widehat{CID}\) (vì 2 góc đối đỉnh)

\(AI=CI\) (vì I là trung điểm của \(AC\))

=> \(\Delta AIB=\Delta CID\left(c-g-c\right).\)

b) Xét 2 \(\Delta\) \(DIA\)\(BIC\) có:

\(DI=BI\left(gt\right)\)

\(\widehat{DIA}=\widehat{BIC}\) (vì 2 góc đối đỉnh)

\(IA=IC\) (như ở trên)

=> \(\Delta DIA=\Delta BIC\left(c-g-c\right)\)

=> \(AD=BC\) (2 cạnh tương ứng).

=> \(\widehat{IDA}=\widehat{IBC}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AD\) // \(BC.\)

c) Theo câu a) ta có \(\Delta AIB=\Delta CID.\)

=> \(\widehat{BAI}=\widehat{DCI}\) (2 góc tương ứng).

\(\widehat{BAI}=90^0\left(gt\right)\)

=> \(\widehat{DCI}=90^0.\)

=> \(DC\perp IC\)

Hay \(DC\perp AC\left(đpcm\right).\)

Chúc bạn học tốt!

11 tháng 12 2017

B A C D l

a, Xét t/g AIB và t/g CID có:

IA = IC (gt)

IB = ID (gt)

góc AIB = góc CID (đối đỉnh)

=> t/g AIB = t/g CID (c.g.c)

b, Xét t/g AID và t/g CIB có

IA =  IC (gt)

ID = IB (gt)

góc AID = góc CIB (đối đỉnh)

=> t/g AID = t/g CIB (c.g.c)

=> AD = BC ; góc IAD = góc ICB 

=> AD // BC (vì có 2 góc so le trong bằng nhau)

c, Vì t/g AIB = t/g CID (câu a) => góc IAB = góc ICD = 90 độ

=> DC _|_ AC

a) Xét ΔAIB và ΔCID có

IA=IC(I là trung điểm của AC)

\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)

IB=ID(gt)

Do đó: ΔAIB=ΔCID(c-g-c)

b) Xét ΔAID và ΔCIB có 

IA=IC(I là trung điểm của AC)

\(\widehat{AID}=\widehat{CIB}\)(hai góc đồng vị)

ID=IB(gt)

Do đó: ΔAID=ΔCIB(c-g-c)

Suy ra: AD=CB(Hai cạnh tương ứng) và \(\widehat{DAI}=\widehat{BCI}\)(hai góc tương ứng)

mà \(\widehat{DAI}\) và \(\widehat{BCI}\) là hai góc ở vị trí so le trong

nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)

a) Xét ΔABIΔABIvà ΔCIDΔCID ta có:
BI = DI (gt)
ˆAIBAIB^ = ˆCIDCID^ ( 2 góc đối đỉnh)
AI = CI (vì I là trung điểm của AC)
⇒ΔAIB=ΔCID⇒ΔAIB=ΔCID

b) Vì ΔAIB=ΔCIDΔAIB=ΔCID (c/m câu a)
⇒ˆICD=ˆBAI⇒ICD^=BAI^ (2 góc tương ứng)
Mà ˆBAI=90oBAI^=90o ⇒ˆICD=90o⇒ICD^=90o
⇒DC⊥AC

4 tháng 12 2021

a) Xét Δ AIB và Δ CID:

+ IB = ID (gt).

+ IA = IC (I là trung điểm của AC).

+ ^AIB = ^CID (2 góc đối đỉnh).

=> Δ AIB = Δ CID (c - g - c).

b) Xét tứ giác ABCD có:

+ I là trung điểm của AC (gt). 

+ I là trung điểm của BC (IB = ID).

=> Tứ giác ABCD là hình bình hành (dhnb).

=> AD = BC và AD // BC (Tính chất hình bình hành).

c) Xét tứ giác KABC có: 

+ E là trung điểm của AB (gt).

+ E là trung điểm của KC (EC = EK).

=> Tứ giác KABC là hình bình hành (dhnb).

=> KA // BC (Tính chất hình bình hành).

Mà AD // BC (cmt).

=> 3 điểm D, A, K thẳng hàng (đpcm).

4 tháng 8 2017

(bn tự vẽ hình nha)

b) Tam giác AID= Tam giác CIB (c.g.c) => AD=BC (2 cạnh tương ứng)

c) Nếu DC vuông góc với AC mà AB//DC => ^BAC=^ACD=900 (So le trong)

Vậy tam giác ABC vuông tại A thì DC vuông góc AC.

7 tháng 12 2019

a) Xét 2 \(\Delta\) \(AMB\)\(DMC\) có:

\(AM=DM\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(MB=MC\) (vì M là trung điểm của \(BC\))

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)

=> \(AB=DC\) (2 cạnh tương ứng).

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).

Hay \(\widehat{ABC}=\widehat{DCB}.\)

Xét 2 \(\Delta\) \(ABC\)\(DCB\) có:

\(AB=DC\left(cmt\right)\)

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

Cạnh BC chung

=> \(\Delta ABC=\Delta DCB\left(c-g-c\right)\)

=> \(\widehat{ACB}=\widehat{DBC}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AC\) // \(BD\left(đpcm\right).\)

Chúc bạn học tốt!

7 tháng 12 2019

Hình tự vẽ ạ.

a, Xét \(\Delta AMB\)\(\Delta DMC\) có:

\(AM=MD\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (2 góc đối đỉnh)

\(MB=MC\) (vì M là trung điểm BC)

\(\Rightarrow\Delta AMB\) = \(\Delta DMC\) (c.g.c)

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh...
Đọc tiếp

Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?

Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.

Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE

Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF

Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!

0
26 tháng 11 2019

a) Xét 2 \(\Delta\) \(ABH\)\(ACH\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{A_1}=\widehat{A_2}\) (vì \(AH\) là tia phân giác của \(\widehat{A}\))

Cạnh AH chung

=> \(\Delta ABH=\Delta ACH\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta ABH=\Delta ACH.\)

=> \(\widehat{AHB}=\widehat{AHC}\) (2 góc tương ứng).

Ta có: \(\widehat{AHB}+\widehat{AHC}=180^0\) (vì 2 góc kề bù).

\(\widehat{AHB}=\widehat{AHC}\left(cmt\right)\)

=> \(2.\widehat{AHB}=180^0\)

=> \(\widehat{AHB}=180^0:2\)

=> \(\widehat{AHB}=90^0.\)

=> \(\widehat{AHB}=\widehat{AHC}=90^0\)

=> \(AH\perp BC\left(đpcm\right).\)

Chúc bạn học tốt!

26 tháng 11 2019

đăng toàn câu dễ.....s ko tự lm đi