Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BH=AB^2/BC=3,6cm
CH=BC-BH=6,4(Cm)
b: \(AM\cdot AB=AH^2\)
AN*AC=AH^2
DO đó: AM*AB=AN*AC
AB*BM*AC*CN
=BH^2*CH^2
=AH^4
a: Xét ΔAHB vuông tại H cso HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
c: \(\left(\dfrac{AB}{AC}\right)^2=\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)
b: \(MA\cdot MB+NA\cdot NC\)
\(=MH^2+NH^2=AH^2\)
1)
a) trong tam giac ABC vuong tai A co
+)BC2=AB2+AC2
suy ra AC=12cm
+)AH.BC=AB.AC
suy ra AH=7,2cm
b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm
suy ra MN=7,2cm
c) goi O la giao diem cu MN va AH
Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm
suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB
Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC
suy ra tam giac AKB can tai K
suy ra goc B= goc BAK
Ta co goc B+ goc BAH=90 do
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)
Tự vẽ hình nhé
a) \(CM:AM.AB=AN.AC\)
`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`
\(AH^2=AM.AB\left(HTL\right)\left(1\right)\)
`text{Xét ΔHAC vuông tại H (AH là đường cao), HN là đường cao (N là hình chiều H lên AC)}`
\(AH^2=AN.AC\left(HTL\right)\left(2\right)\)
`text{Từ (1) và (2)}` \(\Rightarrow AM.AB=AN.AC\left(=AH^2\right)\)
b) \(CM:AM.AN=\frac{AH^3}{BC}\)
`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`
\(AH^2=AM.AB\left(HTL\right)\\ \Rightarrow AM=\frac{AH^2}{AB}\left(3\right)\)
`text{Xét ΔHAC vuông tại H (AH là đường cao), HN là đường cao (N là hình chiều H lên AC)}`
\(AH^2=AN.AC\left(HTL\right)\\ \Rightarrow AN=\frac{AH^2}{AC}\left(4\right)\)
`text{Xét ΔABC vuông tại H (gt), AM là đường cao (gt)}`
\(AB.AC=AH.BC\left(HTL\right)\\ \Rightarrow AH^3.AB.AC=AH^3.AH.BC\\ \Rightarrow AH^3.AB.AC=AH^4.BC\\ \Rightarrow\frac{AH^4}{AB.AC}=\frac{AH^3}{BC}\\ \Rightarrow\frac{AH^2}{AB}.\frac{AH^2}{AC}=\frac{AH^3}{BC}\\ \Rightarrow AM.AN=\frac{AH^3}{BC}\left(do\left(3\right)\left(4\right)\right)\)
c) `text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`
\(BH^2=BM.BC\left(HTL\right)\Rightarrow BM=\frac{BH^2}{AB}\left(5\right)\)
`text{Xét ΔHAC vuông tại H (AH là đường cao), HN là đường cao (N là hình chiều H lên AC)}`
\(CH^2=CN.AC\left(HTL\right)\Rightarrow CN=\frac{CH^2}{AC}\left(6\right)\)
`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`
Và
`text{Xét ΔHAB vuông tại H (AH là đường cao), HM là đường cao (M là hình chiều H lên AB)}`
\(AB^2=BH.BC\left(HTL\right)\\ AC^2=CH.BC\left(HTL\right)\\ \Rightarrow\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=BH.CH\\ \Rightarrow AB^3.CH=AC^2.BH\\ \Rightarrow AH^4.CH^2=AC^4.BH^2\\ \Rightarrow AB^3.CH^2.AB=AC^3.BH^2.AC\\ \Rightarrow AB^3.\frac{CH^2}{AC}=AC^3.\frac{BH^2}{AB}\\ \Rightarrow AB^3=CN=AC^3.BM\left(do\left(5\right)\left(6\right)\right)\)
Bài 2:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=MN
Ta có: \(AM\cdot AB+AN\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2=2\cdot MN^2\)
a, Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào 2 tam giác \(\Delta AHB\) có: \(\hat{AHB}=90^o\), \(HM\perp AB\) và \(\Delta AHC\) có: \(\hat{AHC}=90^o\), \(HN\perp AC\) ta có:
+ \(\Delta AHB\) có: \(\hat{AHB}=90^o\), \(HM\perp AB\)
\(\Rightarrow AH^2=AM.AB\) (1)
+\(\Delta AHC\) có: \(\hat{AHC}=90^o\), \(HN\perp AC\)
\(\Rightarrow AH^2=AN.AC\) (2)
Từ (1) và (2) \(\Rightarrow AM.AB=AN.AC\)
b, Tứ giác MANH có: \(\hat{MAN}=\hat{ANH}=\hat{AMH}=90^o\)
\(\Rightarrow\)MANH là hình chữ nhật \(\Rightarrow MN=AH\) (3) \(\Delta ABC\) có: \(\hat{BAC}=90^o\), \(AH\perp BC\) \(\Rightarrow AH^2=BH.HC\) (hệ thức về cạnh và đường cao trong tam giác vuông) (4) Từ (3) và (4) \(\Rightarrow MN^2=BH.HC\) c, \(\Delta ABC\) có: \(\hat{BAC}=90^o\), \(AH\perp BC\) \(\Rightarrow\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=HC.BC\end{matrix}\right.\)(hệ thức về cạnh và đường cao trong tam giác vuông) Ta có: \(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{HC.BC}=\dfrac{BH}{HC}\)