Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh \(\Delta ABH\)đồng dạng với \(\Delta CAH\)(G.G)
\(=>\frac{BH}{AB}=\frac{AH}{AC}\) \(=>\frac{BH}{15}=\frac{3}{5}\)
\(=>BH=9\)
Mà \(AB^2=BH.BC\)
=> \(BC=\frac{15^2}{9}=25\)
=> \(HC=25-9=16\)
Ta có \(AH^2=HB.HC\)
=> \(AH^4=HB^2.HC^2\)
Mà \(\begin{cases}HB^2=BE.AB\\HC^2=CF.AC\end{cases}\)
=> \(AH^4=BE.CF.AB.AC\)
Mà \(AB.AC=AH.BC\)
=> \(AH^4=BE.CF.BC.AH\)
=> đpcm
Bài 1
a) \(BC=125\Rightarrow BC^2=15625\)
\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)
\(\frac{AB^2}{9}=625\Rightarrow AB=75\)
\(\frac{AC^2}{16}=625\Rightarrow AC=100\)
Áp dụng hệ thức lượng trong tam giác vuông ta có
\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)
\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)
b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông
Bài 2
Hình bạn tự vẽ
Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)
\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)
Bài 3 Đề bài này không đủ dữ kiện tính S của ABC
chịu toán lp 9 mới có lp 7 thôi mà