\(AB^2=BH\times BC\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc ABH chung

Do đo: ΔABH\(\sim\)ΔCBA

Suy ra: AB/CB=BH/BA=AH/CA

hay BH/HA=BA/CA(1)

b: Vì P là trung điểm của HB

và Q là trung điểm của HA

nên \(\dfrac{BP}{AQ}=\dfrac{HB}{AH}=\dfrac{AB}{AC}\)

2 tháng 2 2021

Bổ sung hình vẽ

21 tháng 8 2019

giup mình với mai đi hc rồi

21 tháng 4 2018

a) Xét tam giác HAB và tam giác ABC , có :

A^ = H^ = 90o

B^ : góc chung

=> tam giác ABH ~ tam giác CBA ( g.g)

ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 62 + 82 = BC2

=> BC2 = 100

=> BC=10

Vì tam giác ABH ~ tam giác CBA ( cmt)

=> \(\dfrac{AB}{BC}\)= \(\dfrac{AH}{AC}\)

=> AH . BC = AB . AC

=> AH.10= 6.8

=> AH = 4,8

b)

Ta có :

A^1 + B^ = 90o

B^ + C^ = 90o

=> A^1 = C^

Xét tam giác HAC , và tam giác HAB , có :

A^1 = C^ ( cmt )

H^1 = H^2 = 90o

=> tam giác HAB ~ tam giác HCA ( g.g)

=> \(\dfrac{AH}{HC}\)= \(\dfrac{HB}{HA}\)=> AH2 = HC . HB

27 tháng 2 2018

A, Có : góc  HBA = góc ABC ( chung 1 góc )

=> tam giác HBA đông dạng với tam giác ABC ( g.g)

B, câu (A) => HA/AC = BA/BC

=> AB.AC = AH.BC

Tk mk nha