Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc ABH chung
Do đo: ΔABH\(\sim\)ΔCBA
Suy ra: AB/CB=BH/BA=AH/CA
hay BH/HA=BA/CA(1)
b: Vì P là trung điểm của HB
và Q là trung điểm của HA
nên \(\dfrac{BP}{AQ}=\dfrac{HB}{AH}=\dfrac{AB}{AC}\)
a) Xét tam giác HAB và tam giác ABC , có :
A^ = H^ = 90o
B^ : góc chung
=> tam giác ABH ~ tam giác CBA ( g.g)
ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 62 + 82 = BC2
=> BC2 = 100
=> BC=10
Vì tam giác ABH ~ tam giác CBA ( cmt)
=> \(\dfrac{AB}{BC}\)= \(\dfrac{AH}{AC}\)
=> AH . BC = AB . AC
=> AH.10= 6.8
=> AH = 4,8
b)
Ta có :
A^1 + B^ = 90o
B^ + C^ = 90o
=> A^1 = C^
Xét tam giác HAC , và tam giác HAB , có :
A^1 = C^ ( cmt )
H^1 = H^2 = 90o
=> tam giác HAB ~ tam giác HCA ( g.g)
=> \(\dfrac{AH}{HC}\)= \(\dfrac{HB}{HA}\)=> AH2 = HC . HB
A, Có : góc HBA = góc ABC ( chung 1 góc )
=> tam giác HBA đông dạng với tam giác ABC ( g.g)
B, câu (A) => HA/AC = BA/BC
=> AB.AC = AH.BC
Tk mk nha