K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

c) Xét ΔABH có BI là đường phân giác

=>\(\dfrac{AB}{BH}\)=\(\dfrac{AI}{IH}\)(1)

Xét ΔABC có BD là đường phân giác

=> \(\dfrac{BC}{AB}\)=\(\dfrac{DC}{AD}\)

\(\dfrac{BC}{AB}\)= \(\dfrac{AB}{BH}\)(cmt)

=>\(\dfrac{DC}{AD}\)=\(\dfrac{AB}{BH}\) (2)

Từ (1)(2)=>\(\dfrac{AI}{IH}\)=\(\dfrac{DC}{AD}\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

=>ΔHBA đồng dạng với ΔHAC
b: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

d: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

26 tháng 2 2022

-Tham khảo:

https://hoc24.vn/cau-hoi/.4916932418792

a: BC=10cm

Xét ΔABC có BD là phân giác

nên DA/AB=DC/BC

=>DA/6=DC/10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:DA=3cm; DC=5cm

b: Xét ΔBHA có BI là phân giác

nên IH/IA=BH/BA(1)

Xét ΔABC có BD là phân giác

nên AD/DC=BA/BC(2)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

hay BA/BC=BH/BA(3)

Từ (1), (2) và (3) suy ra IH/IA=AD/DC

22 tháng 4 2018

A B C H 12cm 16cm I D

a)Tính BC:

\(\Delta ABC\)vuông tại A nên:

BC2=AB2+AC2

BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)

b) Xét \(\Delta vuôngABC\)\(\Delta VuôngHBA\)có:

\(\widehat{B}\):chung 

Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)

Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)

=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH       =>AB = BC.BH

c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:

\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)

Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:

\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác)   (2)

Vì BI là đường phân giác của \(\Delta HBA\) nên:

\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác)   (3)

Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC vuông tại A có AH vuông góc BC

nên AB^2=BH*BC

ΔABC vuông tại A có AH vuông góc BC

nên AH^2=HB*HC

15 tháng 5 2023

giải rõ hơn được kh ạ

 

a: ΔACB vuông tại A co AH vuông góc BC

nên AB^2=BH*BC

b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=16/8=2

=>AD=6cm

a) Xét ΔABH vuông tại H và ΔCAH vuông tại H có 

\(\widehat{ABH}=\widehat{CAH}\left(=90^0-\widehat{ACH}\right)\)

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{36}+\dfrac{1}{64}=\dfrac{100}{2304}\)

hay AH=4,8(cm)