K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

a) xét tam giác abc vuông tại a, có 

bc^2=ab^2+ac^2 suy ra bc=10 cm

có  Sabc=1/2*ab*ac

suy ra 1/2ad*bc=1/2*ab*ac

suy ra ad=4,8cm

b)   xét tam giác ABE và DBF, có 

            \(\widehat{BAC}\)\(\widehat{BDF}\)=90 độ

            \(\widehat{ABE}\)\(\widehat{EBC}\)

do đó    tam giác ABE đồng dạng DBF

8 tháng 3 2019

câu c chịu

12 tháng 8 2018

hình bạn tự vẽ

a) Áp dụng Pytago ta có:

 \(AB^2+AC^2=BC^2\)

<=>  \(BC^2=6^2+8^2=100\)

<=>  \(BC=10\)

\(S_{ABC}=\frac{AD.BC}{2}=\frac{AB.AC}{2}\)

=>   \(AD.BC=AB.AC\)

=>  \(AD=\frac{AB.AC}{BC}=\frac{6.8}{10}=6,4\)

b)  Xét tam giác ABE và tam giác DBF có:

góc BAE = góc BDF = 900

góc ABE = góc DBF (gt)

suy ra: tam giác ABE ~ tam giác DBF

c)  Áp dụng tính chất đường phân giác ta có:

\(\frac{AE}{EC}=\frac{AB}{BC}\)  (1) 

 \(\frac{DF}{FA}=\frac{BD}{AB}\) (2)

Xét tam giác BDA và tam giác BAC có:

góc B chung

góc BDA = góc BAC = 900

suy ra: tg BDA ~ tg BAC

=> BD/BA = BA/BC   

Từ (1) , (2) và (3) suy ra:  \(\frac{AE}{EC}=\frac{DF}{FA}\) 

=>  \(DF.EC=FA.AE\)

AH
Akai Haruma
Giáo viên
19 tháng 6 2019

Hình vẽ:

Tam giác đồng dạng

AH
Akai Haruma
Giáo viên
19 tháng 6 2019

Lời giải:
a)

Áp dụng định lý Pitago cho tam giác vuông $ABC$:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\) (cm)

\(S_{ABC}=\frac{AB.AC}{2}=\frac{AD.BC}{2}\Rightarrow AD=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\) (cm)

b)

Xét tam giác $ABE$ và $DBF$ có:

\(\widehat{ABE}=\widehat{DBF}(=\frac{\widehat{B}}{2})\)

\(\widehat{BAE}=\widehat{BDF}(=90^0)\)

\(\Rightarrow \triangle ABE\sim \triangle DBF(g.g)\)

c)

Xét tam giác $ABD$ có đường phân giác trong $BF$, áp dụng tính chất đường phân giác: \(\frac{AF}{DF}=\frac{AB}{BD}(1)\)

Xét tam giác $BDA$ và $BAC$ có:

\(\widehat{B}\) chung

\(\widehat{BDA}=\widehat{BAC}(=90^0)\)

\(\Rightarrow \triangle BDA\sim \triangle BAC(g.g)\Rightarrow \frac{BA}{BD}=\frac{BC}{BA}(2)\)

Xét tam giác $BAC$ có đường phân giác trong $BE$, áp dụng tính chất đường phân giác ta có: \(\frac{BC}{BA}=\frac{EC}{AE}(3)\)

Từ \((1);(2);(3)\Rightarrow \frac{AF}{DF}=\frac{EC}{AE}\Rightarrow AE.AF=DF.EC\) (đpcm)

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.a) CM: Tam giác ABE đồng dạng với tam giác ACF.b) CM: Tam giác AFE đồng dạng với tam giác ACB.c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng...
Đọc tiếp

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.

a) CM: Tam giác ABE đồng dạng với tam giác ACF.

b) CM: Tam giác AFE đồng dạng với tam giác ACB.

c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.

Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.

a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM

b) CM: tam giác ACM đồng dạng với tam giác HNC.

c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.

1
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

Điểm D ở đâu vậy bạn?

18 tháng 8 2021

Mình không biết nữa nhưng cô mình ra đề như vậy