K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

hình bạn tự vẽ

a) Áp dụng Pytago ta có:

 \(AB^2+AC^2=BC^2\)

<=>  \(BC^2=6^2+8^2=100\)

<=>  \(BC=10\)

\(S_{ABC}=\frac{AD.BC}{2}=\frac{AB.AC}{2}\)

=>   \(AD.BC=AB.AC\)

=>  \(AD=\frac{AB.AC}{BC}=\frac{6.8}{10}=6,4\)

b)  Xét tam giác ABE và tam giác DBF có:

góc BAE = góc BDF = 900

góc ABE = góc DBF (gt)

suy ra: tam giác ABE ~ tam giác DBF

c)  Áp dụng tính chất đường phân giác ta có:

\(\frac{AE}{EC}=\frac{AB}{BC}\)  (1) 

 \(\frac{DF}{FA}=\frac{BD}{AB}\) (2)

Xét tam giác BDA và tam giác BAC có:

góc B chung

góc BDA = góc BAC = 900

suy ra: tg BDA ~ tg BAC

=> BD/BA = BA/BC   

Từ (1) , (2) và (3) suy ra:  \(\frac{AE}{EC}=\frac{DF}{FA}\) 

=>  \(DF.EC=FA.AE\)

8 tháng 3 2019

a) xét tam giác abc vuông tại a, có 

bc^2=ab^2+ac^2 suy ra bc=10 cm

có  Sabc=1/2*ab*ac

suy ra 1/2ad*bc=1/2*ab*ac

suy ra ad=4,8cm

b)   xét tam giác ABE và DBF, có 

            \(\widehat{BAC}\)\(\widehat{BDF}\)=90 độ

            \(\widehat{ABE}\)\(\widehat{EBC}\)

do đó    tam giác ABE đồng dạng DBF

8 tháng 3 2019

câu c chịu

21 tháng 6 2019

#)Bạn tham khảo nhé :

Câu hỏi của Trần NgọcHuyền - Toán lớp 8 - Học toán với OnlineMath

P/s : vô tkhđ của mk ấn vô đc nhé !

13 tháng 5 2015

mình không biết vẽ hình nên chỉ giải cho bạn thôi nha

a) Xét tam giác DBA và Tam giác ABC có

D=A=90 độ

B góc chung

vậy tam giác DBA đồng dạng với tam giác ABC (g.g)

b) 

vì Góc A = 90  độ nên góc B + góc C = 90 độ

mà Góc B = 2Góc c nên 2góc C+ góc C =90 độ

<=> 3Góc C=90 độ => Góc C = 30 độ

Góc B=60 độ

mà BE là phân giác Góc B nên góc ABE= góc EBC= ECB = 30 độ

Xét Tam giác ABE và Tam giác ACB có

    Góc A chung

    góc ABE= ECB(cmt)

vậy Tam giác ABE đồng dạng với tam giác ACB(g.g)

=> \(\frac{AB}{AC}=\frac{AE}{AB}\Rightarrow AB.AB=AC.AE\)(điều phải chứng minh)

c) Vì  tam giác DBA đồng dạng với tam giác ABC

=> \(\frac{AB}{BC}=\frac{BD}{AB}\)(1)

Tam giác ABD có BF là phân giác góc B, ta có

     \(\frac{FD}{FA}=\frac{BD}{AB}\left(2\right)\)

Tam giác ABC có BE là phân giác góc B, ta có:

     \(\frac{AE}{EC}=\frac{AB}{AC}\left(3\right)\)

Từ (1),(2) và (3) ta suy ra \(\frac{FD}{FA}=\frac{AE}{EC}\Rightarrow EA.FA=EC.FD\)(điều phải chứng minh)

 

 

 

Điểm D ở đâu vậy bạn?

18 tháng 8 2021

Mình không biết nữa nhưng cô mình ra đề như vậy

 

14 tháng 4 2016

bạn chưa biết làm phần nào z

oh sorry I don't know!!!

6747568768

15 tháng 5 2017

a) Xét tam giác ADB và tam giác BAC, ta có:
   Góc B chung
   Góc D = góc A (=900)
=> Tam giác ADB đồng dạng tam giác CAB
b) Ko biết chứng minh cái gì
c) Có tam giác ADB đồng dạng tam giác CAB (cmt)
\(\Rightarrow\frac{BD}{AB}=\frac{AB}{BC}\left(1\right)\)
Xét tam giác ABD, có BF là tia phân giác
\(\Rightarrow\frac{AF}{AB}=\frac{FD}{BD}\Rightarrow\frac{BD}{AB}=\frac{DF}{FA}\left(2\right)\)
Xét tam giác ABD, có BD là tia phân giác
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\Rightarrow\frac{AB}{AE}=\frac{BC}{EC}\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\left(3\right)\)
Từ (1); (2) và (3)
\(\Rightarrow\frac{DF}{FA}=\frac{AE}{EC}\)