Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác abc vuông tại a, có
bc^2=ab^2+ac^2 suy ra bc=10 cm
có Sabc=1/2*ab*ac
suy ra 1/2ad*bc=1/2*ab*ac
suy ra ad=4,8cm
b) xét tam giác ABE và DBF, có
\(\widehat{BAC}\)= \(\widehat{BDF}\)=90 độ
\(\widehat{ABE}\)= \(\widehat{EBC}\)
do đó tam giác ABE đồng dạng DBF
mình không biết vẽ hình nên chỉ giải cho bạn thôi nha
a) Xét tam giác DBA và Tam giác ABC có
D=A=90 độ
B góc chung
vậy tam giác DBA đồng dạng với tam giác ABC (g.g)
b)
vì Góc A = 90 độ nên góc B + góc C = 90 độ
mà Góc B = 2Góc c nên 2góc C+ góc C =90 độ
<=> 3Góc C=90 độ => Góc C = 30 độ
Góc B=60 độ
mà BE là phân giác Góc B nên góc ABE= góc EBC= ECB = 30 độ
Xét Tam giác ABE và Tam giác ACB có
Góc A chung
góc ABE= ECB(cmt)
vậy Tam giác ABE đồng dạng với tam giác ACB(g.g)
=> \(\frac{AB}{AC}=\frac{AE}{AB}\Rightarrow AB.AB=AC.AE\)(điều phải chứng minh)
c) Vì tam giác DBA đồng dạng với tam giác ABC
=> \(\frac{AB}{BC}=\frac{BD}{AB}\)(1)
Tam giác ABD có BF là phân giác góc B, ta có
\(\frac{FD}{FA}=\frac{BD}{AB}\left(2\right)\)
Tam giác ABC có BE là phân giác góc B, ta có:
\(\frac{AE}{EC}=\frac{AB}{AC}\left(3\right)\)
Từ (1),(2) và (3) ta suy ra \(\frac{FD}{FA}=\frac{AE}{EC}\Rightarrow EA.FA=EC.FD\)(điều phải chứng minh)
a) Xét tam giác ADB và tam giác BAC, ta có:
Góc B chung
Góc D = góc A (=900)
=> Tam giác ADB đồng dạng tam giác CAB
b) Ko biết chứng minh cái gì
c) Có tam giác ADB đồng dạng tam giác CAB (cmt)
\(\Rightarrow\frac{BD}{AB}=\frac{AB}{BC}\left(1\right)\)
Xét tam giác ABD, có BF là tia phân giác
\(\Rightarrow\frac{AF}{AB}=\frac{FD}{BD}\Rightarrow\frac{BD}{AB}=\frac{DF}{FA}\left(2\right)\)
Xét tam giác ABD, có BD là tia phân giác
\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\Rightarrow\frac{AB}{AE}=\frac{BC}{EC}\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\left(3\right)\)
Từ (1); (2) và (3)
\(\Rightarrow\frac{DF}{FA}=\frac{AE}{EC}\)
hình bạn tự vẽ
a) Áp dụng Pytago ta có:
\(AB^2+AC^2=BC^2\)
<=> \(BC^2=6^2+8^2=100\)
<=> \(BC=10\)
\(S_{ABC}=\frac{AD.BC}{2}=\frac{AB.AC}{2}\)
=> \(AD.BC=AB.AC\)
=> \(AD=\frac{AB.AC}{BC}=\frac{6.8}{10}=6,4\)
b) Xét tam giác ABE và tam giác DBF có:
góc BAE = góc BDF = 900
góc ABE = góc DBF (gt)
suy ra: tam giác ABE ~ tam giác DBF
c) Áp dụng tính chất đường phân giác ta có:
\(\frac{AE}{EC}=\frac{AB}{BC}\) (1)
\(\frac{DF}{FA}=\frac{BD}{AB}\) (2)
Xét tam giác BDA và tam giác BAC có:
góc B chung
góc BDA = góc BAC = 900
suy ra: tg BDA ~ tg BAC
=> BD/BA = BA/BC
Từ (1) , (2) và (3) suy ra: \(\frac{AE}{EC}=\frac{DF}{FA}\)
=> \(DF.EC=FA.AE\)