Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt BC=x \(\Rightarrow\)BH=x-16
\(\Rightarrow\)AB2=x(x-16) \(\Leftrightarrow\)152=x(x-16) \(\Leftrightarrow\)x=25
\(\Rightarrow\)BC=25(cm),BH=25-16=9(cm)
AC=\(\sqrt{BC^2-AB^2}\)=20(cm)
AH=\(\sqrt{BH.HC}\)=12(cm
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Ta có : \(\frac{HB}{HC}=4\Rightarrow HB=4HC\)
lại có : \(BC=HB+CH\Rightarrow25=4HC+CH\Leftrightarrow5HC=25\Leftrightarrow HC=5\)cm
=> \(HB=4.5=20\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AB^2=BH.BC=20.25\Rightarrow AB=10\sqrt{5}\)cm
* Áp dụng hệ thức : \(AH^2=HC.HB=100\Rightarrow AH=10\)cm
* Áp dụng hệ thức : \(AC^2=CH.BC=5.25\Rightarrow AC=5\sqrt{5}\)cm
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.10.25=\frac{250}{2}=145\)cm2
Xét tam giác ABC vuông tại A, đường cao AH
*Áp dụng hệ thức : \(AC^2=HC.BC\Rightarrow AC^2=\left(\frac{4}{5}AC\right).30\)
\(\Leftrightarrow AC^2=24AC\Leftrightarrow AC\left(AC-24\right)=0\Leftrightarrow AC=24\)cm
Theo định lí Pytago tam giác ABC vuông tại A
\(AB=\sqrt{BC^2-AC^2}=\sqrt{900-576}=\sqrt{324}\Rightarrow AB=18\)cm
\(BC=BH+HC=10\left(cm\right)\\ \text{Áp dụng HTL: }\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)