Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có theo công thức lượng giác :
xét trong tam giác vuông AHB ta có AK.AB=AH2
mặt khác trong tam giác vuông ABC có : AH2=HC.HB
=> AK.AB=HB.HC (=AH2)
a) tam giác AKH vuông tại K và tam giác AHB vuông tại H có
góc KAH =góc HAB
=> tam giác AKH đồng dạng tam giác AHB (g-g)
=> AK/AH=AH/AB
=> AH^2=AK.AB (1)
tam giác ABC vuông tại A=> AH^2=BH.CH (hệ thức lượng tam giác vuông )
(1),(2)=> AK.AB=BH.CH (đpcm)
b) đề sai bn nhé phải là cm AB^2/AC^2=HB/HC
ta có AB^2=BH.BC (hệ thức lượng tam giác vuông )
ta có AC^2=HC.BC (hệ thức lượng tam giác vuông )
=> \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\left(đpcm\right)\)
a)
Liên tiếp áp dụng HTL, ta có: \(\hept{\begin{cases}AB.AK=AH^2\\HB.HC=AH^2\end{cases}}\)
=> \(AB.AK=HB.HC\)
=> TA CÓ ĐPCM.
b) LIÊN TIẾP ÁP DỤNG HTL TA ĐƯỢC:
\(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.CB\end{cases}}\)
CÓ: \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.CB}=\frac{HB}{HC}\)
VẬY TA CÓ ĐPCM.
a, Xét tam giác ABH vuông tại H, đường cao HG
Ta có : \(NH^2=AB.BG\)( hệ thức lượng )
b, Xét tam giác AHC vuông tại H, đường cao HK
Ta có : \(AH^2=AK.AC\)( hệ thức lượng ) (1)
Xét tam giác ABC vuông tại A, đường cao AH
Ta có : \(AH^2=HB.HC\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(AK.AC=HB.HC\Rightarrow\frac{AC}{HC}=\frac{HB}{AK}\)
a: BC=căn 3^2+4^2=5cm
HB=AB^2/BC=1,8cm
HC=5-1,8=3,2cm
AH=3*4/5=2,4cm
b:
1: ΔAHB vuông tại H có HE là đường cao
nên AE*EB=EH^2
2: ΔHAC vuông tại H có HF là đường cao
nên AF*FC=HF^2
=>AE*EB+AF*FC=HE^2+HF^2=EF^2=AH^2
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
tam giác AHB vuông tại H , đường cao HE có
AH2=AE.AB
tam giác AHC vuông tại H , đường cao HF có
AH2=AF.AC
=> AE.AB=AF.AC
Chứng minh: HB/HC = (AB/AC)2
tam giác ABC vuông tại A , đường cao AH có
AB2=HB.BC
AC2=HC.BC
\(\dfrac{AB^2}{AC^2}=\dfrac{HB.BC}{HC.BC}\)
<=> \(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\)
<=> HB/HC = (AB/AC)2
a) Áp dụng hệ thức giữa cạnh và đường cao vào tam giác ABC vuông tại A , đường cao AH , ta có :
\(BH.HC=AH^2\left(1\right)\)
Áp dụng hệ thức giữa cạnh và đường cao vào tam giác AHB vuông tại H , đường cao HK , ta có :
\(AH^2=AB.AK\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow AB.AK=BH.HC\) ( ĐPCM )
b) Áp dụng hệ thức giữa cạnh và đường cao vào tam giác ABC vuông tại A , đường cao AH , ta có :
\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)
\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{HB}{HC}\) ( đpcm )