K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔBCD vuông tại B có BA là đường cao

nên \(AD\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

13 tháng 11 2021

Ai giúp mình với ạ.

13 tháng 11 2021

\(AB=\dfrac{AC}{\cot C}=12\left(cm\right)\\ \Rightarrow BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\\ \Rightarrow\dfrac{AD}{CD}=\dfrac{AB}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\Rightarrow AD=\dfrac{4}{5}CD\\ AD+CD=AC\\ \Rightarrow\dfrac{9}{5}CD=9\Rightarrow CD=5\left(cm\right)\)

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))

29 tháng 10 2021

b: Xét ΔACB vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\left(1\right)\)

Xét ΔABK vuông tại A có AK là đường cao

nên \(AB^2=BK\cdot BD\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)

3 tháng 4 2021

answer-reply-image

mk trả 

lời rồi

k mk nhé

14 tháng 10 2023

ΔCID vuông tại I

=>\(CI^2+ID^2=CD^2\)

=>\(DI=\sqrt{6^2-3.6^2}=4.8\left(cm\right)\)

Kẻ AH vuông góc BC

=>AH//DI

Xét ΔCAH có DI//AH

nên \(\dfrac{DI}{AH}=\dfrac{CD}{CA}=\dfrac{1}{2}\)

=>\(AH=9.6\left(cm\right)\)

ΔAHB vuông tại H

=>\(AB^2=AH^2+HB^2\)

=>\(HB=\sqrt{16^2-9.6^2}=12.8\left(cm\right)\)

ΔAHC vuông tại H

=>\(AH^2+HC^2=AC^2\)

=>\(HC=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)

BC=BH+CH

=12,8+7,2

=20(cm)

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A