K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

DO đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

hay \(AB^2=HB\cdot BC\)

b: \(\widehat{BMH}+\widehat{HBM}=90^0\)

\(\widehat{BNA}+\widehat{ABN}=90^0\)

mà \(\widehat{ABN}=\widehat{HBM}\)

nên \(\widehat{BMH}=\widehat{BNA}\)

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

DO đó: ΔABC\(\sim\)ΔHBA

b: Ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

10 tháng 5 2022

còn tính diện tích nx bn ơi

 

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>AB/HB=AC/HA

=>AB*HA=HB*AC

b: BC=căn 9^2+12^2=15cm

BI là phân giác

=>AI/AB=CI/BC

=>AI/3=CI/5=12/8=1,5

=>AI=4,5cm

c: S HAB/S HCA=(AB/CA)^2

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{20}=\dfrac{15}{25}\)

hay AH=12(cm)

Vậy: AH=12cm

21 tháng 4 2022

xét tam giác ABC và tam giác HBA có

góc BAC=góc AHB=90 độ

góc B chung

suy ra tam giác ABC đồng dạng với tam giác HBA

suy ra AB phần HB = BC phần AB

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>góc HAB=góc ACB

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: BC=căn 15^2+20^2=25cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=20/8=2,5

=>AD=7,5cm

BD=căn 15^2+7,5^2=15/2*căn 5(cm)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

=>BH/AB=BC/BA(1)

hay \(AB^2=BH\cdot BC\)

Câu b đề sai rồi bạn

26 tháng 2 2022

Cảm ơn bạn nhiều. Giải mình câu C nhé. Cảm ơn bạn

 

9 tháng 5 2021

a, Xét △ABC và △HBA có:

∠AHB=∠BAC (=90o), ∠ABC chung

⇒△ABC∼△HBA (g.g)

⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) ⇒ AB2=BH.BC

b, Xét △EDC và △BAC có:

∠BAC=∠EDC (=90o) , ∠BCA chung

⇒ △EDC∼△BAC (g.g)

⇒ \(\dfrac{DC}{AC}=\dfrac{EC}{BC}\) ⇒ \(\dfrac{DC}{EC}=\dfrac{AC}{BC}\)

Xét △ADC và △BEC có:

\(\dfrac{DC}{EC}=\dfrac{AC}{BC}\) (C/m trên)

∠BCA chung

⇒ △ADC∼△BEC (c.g.c)

⇒ ∠ADC=∠BEC

 

 

 

 

9 tháng 5 2021

c, từ b, △ADC∼△BEC

⇒ \(\dfrac{DA}{BE}=\dfrac{AC}{BC}\) (1)

Xét △AHC và △BAC có:

∠AHC=∠BAC (=90o) , ∠BCA chung

⇒ △AHC∼△BAC (g.g)

⇒ \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\) (2)

Từ (1) và (2) ⇒ \(\dfrac{CH}{AC}=\dfrac{DA}{EB}\)