Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E
a) Xét tam giác HBA và tam giác ABC có:
Góc B chung
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\frac{HB}{AB}=\frac{AB}{CB}\Rightarrow AB^2=BH.BC\)
b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có:
\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
Áp dụng tính chất tia phân giác trong tam giác ta có:
\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)
mà AD + DC = AC = 16 cm nên \(AD=6cm.\)
c) Xét tam giác BEA và tam giác BDC có:
\(\widehat{ABE}=\widehat{CBD}\) (BD là tia phân giác)
\(\widehat{BAE}=\widehat{BCD}\) (Cùng phụ với góc \(\widehat{ABC}\) )
\(\Rightarrow\Delta BEA\sim\Delta BDC\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BD}=\frac{AB}{CB}\)
Lại có \(\frac{AB}{CB}=\frac{AD}{DC}\Rightarrow\frac{BE}{BD}=\frac{AD}{DC}\Rightarrow\frac{DB}{EB}=\frac{DC}{DA}\)
Bài giải :
a) Xét tam giác HBA và tam giác ABC có:
Góc B chung
^BHA=^BAC(=90o)
⇒ΔHBA∼ΔABC(g−g)
⇒HBAB =ABCB ⇒AB2=BH.BC
b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có:
BC=√AB2+AC2=20(cm)
Áp dụng tính chất tia phân giác trong tam giác ta có:
ADDC =ABBC =1220 =35
mà AD + DC = AC = 16 cm nên AD=6cm.
c) Xét tam giác BEA và tam giác BDC có:
^ABE=^CBD (BD là tia phân giác)
^BAE=^BCD (Cùng phụ với góc ^ABC )
⇒ΔBEA∼ΔBDC(g−g)
⇒BEBD =ABCB
Lại có ABCB =ADDC ⇒BEBD =ADDC ⇒DBEB =DCDA
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
Bạn kham khảo link này nhé.
Câu hỏi của Trần Ngô Anh Tuyền - Toán lớp 8 - Học toán với OnlineMath
A B C E D M H G
b) Chứng minh tam giác BEC đồng dạng tam giác ADC
Xét \(\Delta CAB\)và \(\Delta CDE\) có:
^CAB = ^CDE (=1v)
^C chung
=> \(\Delta CAB\)~\(\Delta CDE\)
=> \(\frac{CB}{CE}=\frac{CA}{CD}\) (1)
Xét \(\Delta CAD\)và \(\Delta CBE\)có:
\(\frac{CB}{CE}=\frac{CA}{CD}\)( từ (1))
và \(\widehat{C}\)chung
=> \(\Delta CAD\)~ \(\Delta CBE\)
c) Chứng tam giác ABE vuông cân.
+) Ta có: AB \(\perp\)AC (\(\Delta\)ABC vuông )
mà E \(\in\)AC
=> AB \(\perp\)AE => \(\Delta\)ABE vuông
+) Theo (a) => ^DAC = ^EBC
Gọi N là giao điểm của AD và BE
Xét \(\Delta\)DNB và \(\Delta\)ENA có:
^ENA = ^DNB ( đối đỉnh)
^NBD = ^NAE ( vì ^DAC = ^EBC )
=> \(\Delta\)DNB ~ \(\Delta\)ENA
=> ^NDB = ^NEA
Xét \(\Delta\)ABE và \(\Delta\)HAD có:
^AEB = ^HDA ( vì ^NDB = ^NEA ) (1)
^^BAE = ^AHD ( =1v)
=> \(\Delta\)ABE ~ \(\Delta\)HAD
=> ^HAD = ^ ABE (20
mà \(\Delta\)AHD có: AH=HD => \(\Delta\)AHD cân => ^HAD =^ HDA (3)
Từ (1) ; (2) ; (3) => ^ABE =^BEA =>\(\Delta\)ABE cân
Vậy \(\Delta\) ABE vuông cân tại A
d) Ta có: M là trung điểm BE => AM là đường trung tuyến \(\Delta\)ABE mà \(\Delta\)ABE vuông cân tại A
=> AM là đường phân giác ^A của \(\Delta\)ABE
=> AG là đường phân giác ^A của \(\Delta\)ABC
Theo tính chất đường phân giác ta có: \(\frac{GB}{GC}=\frac{AB}{AC}\)
Mà \(\Delta\)ABH ~\(\Delta\)CAH ( dễ tự chứng minh)
=> \(\frac{AB}{CA}=\frac{AH}{CH}\)
=> \(\frac{GB}{GC}=\frac{AH}{CH}\Rightarrow\frac{GB}{AH}=\frac{GC}{CH}=\frac{GB+GC}{AH+CH}=\frac{BC}{AH+CH}\)( tính chất dãy tỉ số bằng nhau)
=> \(\frac{GC}{BC}=\frac{AH}{AH+CH}=\frac{DH}{AH+CH}\)( vì AH=DH)
(tớ mới giải được câu a)
Xét tam giác AHB và CHA => AH/CH = HB/AH mà AH=HD => tỉ số đồng dạng
a, Xét △ABC và △HBA có:
∠AHB=∠BAC (=90o), ∠ABC chung
⇒△ABC∼△HBA (g.g)
⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) ⇒ AB2=BH.BC
b, Xét △EDC và △BAC có:
∠BAC=∠EDC (=90o) , ∠BCA chung
⇒ △EDC∼△BAC (g.g)
⇒ \(\dfrac{DC}{AC}=\dfrac{EC}{BC}\) ⇒ \(\dfrac{DC}{EC}=\dfrac{AC}{BC}\)
Xét △ADC và △BEC có:
\(\dfrac{DC}{EC}=\dfrac{AC}{BC}\) (C/m trên)
∠BCA chung
⇒ △ADC∼△BEC (c.g.c)
⇒ ∠ADC=∠BEC
c, từ b, △ADC∼△BEC
⇒ \(\dfrac{DA}{BE}=\dfrac{AC}{BC}\) (1)
Xét △AHC và △BAC có:
∠AHC=∠BAC (=90o) , ∠BCA chung
⇒ △AHC∼△BAC (g.g)
⇒ \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{CH}{AC}=\dfrac{DA}{EB}\)