K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2022

a, Áp dụng Đ. L py-ta-go vào tg ABC vuông tại A, ta có: 

BC2=AC2+AB2

=>BC2=122+92

           =144+81

           =225.

=>BC=15(cm).

b, Xét tg ABD và tg ABE, có:

góc A = góc E(=90o).

BD chung.

góc ABD= góc DBE(tia phân giác)

=>tg ABD= tg EBD(ch-gn)

=>AD=DE(2 cạnh tương ứng)

 

18 tháng 3 2022

mik ko bít làm câu c

18 tháng 1 2016

sai đề rùi bạn ơi

11 tháng 4 2020

a, xét tam giác ABE và tam giác ADE có : AE chung

AB = AD (Gt)

^DAE = ^BAE do AE là pg của ^BAC (gt)

=> tam giác ABE = tam giác ADE (c-g-c)

b, AB = AD (gt)

=> tam giác ABD cân tại A (đn)

c, đề sai

a) Xét ∆ vuông ABC và ∆ vuông AED ta có : 

AB = AD (gt)

AC = AD (gt)

=> ∆ABC = ∆AED ( 2 cgv)

=> BD = DE 

b) Xét ∆ABD có : 

BAC = 90° 

=> AD\(\perp\)AE 

Mà AB = AD (gt)

=> ∆ABD vuông cân tại A 

=> BDC = 45° 

Chứng minh tương tự ta có : 

BCE = 45° 

=> BDC = BCE = 45° 

Mà 2 góc này ở vị trí so le trong 

=> BD//CE

1 tháng 1 2021

A B C D F A B C D F A B C D E F H K a. CM AB=AF

Vì BE cắt AC tại F mà BE vuông góc AD tại E nên AE vuông góc BF 

Xét tam giác AEB và tam giác AEF có

\(\widehat{BAE}=\widehat{FAE}\)(phân giác góc A cắt BC tại D)

AE chung

\(\widehat{AEB}=\widehat{AEF}\)(AE vuông góc BF)

=> tam giác AEB=tam giác AEF (g.c.g)

=>AB=AF(2 cạnh tương ứng)

b.Ta có HF // DK (đường thẳng đi qua F (gọi là a)cắt AE tại H nên H thuộc a ; a//BC mà D,K thuộc BC)

xét tứ giác HFKD :HF // DK(cmt);HF=DK (gt) 

=>HFKD là hình bình hành (dhnb)

Nên DH=FK,DH//FK (t/c)

c. Vì AB <AC nên góc ABC > góc C (Cái này là lí thuyết ) 

28 tháng 2 2020

a, xét tam giác ABD và tam giác EBD có : BD chung

góc ABD = góc EBD do BD là pg của góc ABC (gt)

góc DAB = góc DEB = 90

=> tam giác ABD = tam giác EBD (ch-gn)

=> BA = BE (đn)

b, đề sai sao ý

28 tháng 2 2020

Uyên:

      Sai ạ, để e xem lại ........

T^T

1 tháng 5 2019

a, xét 2 tam giác vuông AEC và AED có:

            AC=AD(gt)

            AE cạnh chung

=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)

=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)

b, xét t.giác AIC và t.giác AID có:

           AI cạnh chung

         \(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)

          AC=AD(gt)

=> t.giác AIC=t.giác AID(c.g.c)

=> IC=ID=> I là trung điểm của CD(1)

\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)

từ (1) và (2) suy ra AE là trung trực của CD

A B C D E I

5 tháng 8 2019

a) Ta có BC^2= 15^2=225cm
              AC^2=12^2=144cm
              AB^2=9^2=81cm
lại có AB^2+AC^2=144+81=155=BC^2
ví AB^2+AC^2=BC^2
nên tam giác ABC vuông tại A( đpcm)
trong tam giác ABC có BC>AC>AB( 15cm>12cm>9cm)
                      suy ra        A>B>C( định lí quan hệ giữa góc và cạnh đối diện trong một tam giác)
b)Ta có AC vuông góc với BD(gt)
nên AC là đường cao của tam giác BCD
lại có AB=AD(gt)
nên AC là  đường trung tuyến của tam giác BCD
do đó tam giác BCD cân tại C( đpcm)
c)Ta có AC là trung tuyến của tam giác DBC(cmt)
lại có K là trung điểm của BC(gt)
nên CK là trung tuyến của tam giác BCD
mà CK và AC cắt nhau tại M
do đó M là trọng tâm của tam giác BCD
suy ra CM=2/3AC=2/3*12=8(cm)
vậy CM=8cm( đpcm)
d) Ta có N là trực tâm cả tam giác BDC(gt)
nên BN vuông góc với CD(gt)
mà NI vuong góc với CD(gt)

5 tháng 8 2019

Nè bn @Lê Mai Phương bn nhầm bài à trong bài làm gì có ^2

a) Ta có: ABEˆ=12ABQˆ(BE là tia pg)

ABNˆ=12ABCˆ(BD là tia pg)

ABEˆ+ABNˆ=12ABQˆ+12ABCˆ

=12(ABQˆ+ABCˆ)=12.180o=900=DBEˆk

Áp dụng t/c đoạn thẳng nối trung điểm của 2 cạnh trong 1 tam giác thì // với cạnh còn lại

MN // BC hay MDMD // BC.BC.

MDBˆ=DBPˆ

mà DBPˆ=MBDˆ

MDBˆ=MBDˆΔMBD

MB=MD(1)

Do MD // BC hay ME // BQ MEBˆ=EBQˆ

mà EBQˆ=MBEˆMEBˆ=MBEˆ.

ΔMEB⇒ΔMEB cân tại M ME=MB(2)

Lại có: MA=MB(gt)(3)

Từ (1);(2);(3)MB=MD=ME=MA..

Xét ΔAMD;ΔBMEΔAMD;ΔBME: 

MA=MB(cmt)

AMDˆ=BMEˆ(đ2)

MD=ME(cmt)

ΔAMD=ΔBME(c.g.c)ΔAMD=ΔBME(c.g.

ADMˆ=BEMˆ

mà 2 góc này ở vị trí so le trong AD⇒AD // BE.

DBEˆ+ADBˆ=180o (trong cùng phía)

90o+ADBˆ=180oADBˆ=90o

BDAP.