Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình (tự vẽ)
a) ΔABE cân
Xét hai tam giác vuông ABH và EBH có:
\(\widehat{ABH}=\widehat{EBH}\)(BH là phân giác)
HB là cạnh chung.
Do đó: ΔABH = ΔEBH (cạnh huyền - góc nhọn)
⇒ BA = BE (2 cạnh tương ứng)
⇒ ΔABE cân tại B.
b) ΔABE đều
Vì ΔABE là tam giác cân (câu a) có góc B bằng 60o (gt) ⇒ ΔABE là tam giác đều.
c) AED cân
Vì ΔABH = ΔEBH (câu a) ⇒ AH = EH (2 cạnh tương ứng)
Xét hai tam giác vuông ADH và EDH có:
AH = EH (cmt)
HD: cạnh chung
Do đó: ΔADH = ΔEDH (2 cạnh góc vuông)
⇒ \(\widehat{DAH}=\widehat{DEH}\)(góc tương ứng)
⇒ ΔAED cân tại D
d) ΔABF cân
Vì AF// HB ⇒ góc BAF = ABH = 30o (so le trong) (1)
Ta có: \(\widehat{ABC}+\widehat{ABF}=180^o\)(kề bù)
Thay: 60o + ABF = 180o
⇒ ABF = 180o - 60o = 120o
Xét ΔABF, ta có:
\(\widehat{ABF}+\widehat{BFA}+\widehat{FAB}=180^o\)(ĐL)
Thay: 120o + BFA + 30o = 180o
⇒ BFA = 180 - 120 - 30 = 30 (2)
Từ (1) và (2) suy ra: ΔABF cân tại B.
a) Xét ∆ vuông ABC và ∆ vuông AED ta có :
AB = AD (gt)
AC = AD (gt)
=> ∆ABC = ∆AED ( 2 cgv)
=> BD = DE
b) Xét ∆ABD có :
BAC = 90°
=> AD\(\perp\)AE
Mà AB = AD (gt)
=> ∆ABD vuông cân tại A
=> BDC = 45°
Chứng minh tương tự ta có :
BCE = 45°
=> BDC = BCE = 45°
Mà 2 góc này ở vị trí so le trong
=> BD//CE
a) Ta có: ABEˆ=12ABQˆ(BE là tia pg)
ABNˆ=12ABCˆ(BD là tia pg)
⇒ABEˆ+ABNˆ=12ABQˆ+12ABCˆ
=12(ABQˆ+ABCˆ)=12.180o=900=DBEˆk
Áp dụng t/c đoạn thẳng nối trung điểm của 2 cạnh trong 1 tam giác thì // với cạnh còn lại
→MN // BC hay MDMD // BC.BC.
⇒MDBˆ=DBPˆ
mà DBPˆ=MBDˆ
⇒MDBˆ=MBDˆ⇒ΔMBD
⇒MB=MD(1)
Do MD // BC hay ME // BQ ⇒MEBˆ=EBQˆ
mà EBQˆ=MBEˆ⇒MEBˆ=MBEˆ.
⇒ΔMEB⇒ΔMEB cân tại M ⇒ME=MB(2)
Lại có: MA=MB(gt)(3)
Từ (1);(2);(3)⇒MB=MD=ME=MA..
Xét ΔAMD;ΔBMEΔAMD;ΔBME:
MA=MB(cmt)
AMDˆ=BMEˆ(đ2)
MD=ME(cmt)
⇒ΔAMD=ΔBME(c.g.c)⇒ΔAMD=ΔBME(c.g.
⇒ADMˆ=BEMˆ
mà 2 góc này ở vị trí so le trong ⇒AD⇒AD // BE.
⇒DBEˆ+ADBˆ=180o (trong cùng phía)
⇒90o+ADBˆ=180o⇒ADBˆ=90o
⇒BD⊥AP.
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)
sai đề rùi bạn ơi