K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-3^2=16\)

=>\(AC=\sqrt{16}=4\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=AC=4

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

=>\(AD=\dfrac{3}{2}=1,5\left(cm\right)\)

b: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có

\(\widehat{HCD}\) chung

Do đó: ΔCHD đồng dạng với ΔCAB

=>\(\dfrac{CH}{CA}=\dfrac{CD}{CB}\)

=>\(CH\cdot CB=CA\cdot CD\)

c: Ta có: AE\(\perp\)BC

DH\(\perp\)BC

Do đó: HD//AE

Xét ΔAEC có HD//AE

nên \(\dfrac{HC}{HE}=\dfrac{CD}{DA}\)

mà \(\dfrac{CD}{DA}=\dfrac{BC}{BA}\)

nên \(\dfrac{HC}{HE}=\dfrac{BC}{BA}\)

d: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

=>BA=BH và DA=DH

Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: DA=DH

=>D nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BD là đường trung trực của AH

=>BD\(\perp\)AH tại O và O là trung điểm của AH

=>OA=OH(3)

Xét ΔCMN có AO//MN

nên \(\dfrac{AO}{MN}=\dfrac{CO}{CM}\left(4\right)\)

Xét ΔCBM có OH//BM

nên \(\dfrac{OH}{BM}=\dfrac{CO}{CM}\left(5\right)\)

Từ (3),(4),(5) suy ra MN=BM

=>M là trung điểm của BN

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có 

\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))

Do đó: ΔABD\(\sim\)ΔEBC(g-g)

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AD là phân giác

=>BD/CD=AB/AC=3/4

=>4DB=3CD

mà DB+DC=15

nên DB=45/7cm; DC=60/7cm

b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEDC

7 tháng 5 2017

a)   BD=45/7        CD=60/7       DE36/7

b)    ADB=162/7     BCD k có vì 3 điểm này thẳng hàng

7 tháng 5 2017

Thanks.

2 tháng 5 2018

C A B E D

Áp dụng định lý Py-Ta-Go, ta có:

\(BC^2=\sqrt{AB^2+AC^2}\)

\(BC^2=\sqrt{9^2+12^2}\)

\(\Rightarrow BC=15\left(cm\right)\)

Theo tính chất tia phân giác, ta lại có tiếp:

\(\hept{\begin{cases}\frac{CD}{BD}=\frac{AC}{AB}=\frac{12}{9}\\CD+BD=15\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}CD=\frac{60}{7}\\BD=\frac{45}{7}\end{cases}}\)

a: XétΔABC có AD là phân giác

nên DB/CD=AB/AC=3/4(1)

b: Xét ΔCAB có ED//AB

nên ED/EC=AB/AC(2)

từ (1) và (2) suy ra BD/CD=ED/EC

hay \(BD\cdot EC=ED\cdot CD\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{BC}{21}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{9}=\dfrac{5}{7}\\\dfrac{CD}{12}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{45}{7}cm\\CD=\dfrac{60}{7}cm\end{matrix}\right.\)

Vậy: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)

22 tháng 6 2021

undefined