Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ABH và tam giác DBH có : HB chung
góc AHB = góc DHB = 90 do ...
AH = HD (gt)
=> tam giác AHB = tam giác DHB (c-g-c)
b, tam giác AHB = tam giác DHB (Câu a )
=> góc DBH = gosc HBA (Đn) (1)
tam giác AHB vuông tại H do ...
=> góc CBA = 90 - góc HAB
góc CAH = 90 - góc HAB
=> góc CAH = góc HBA và (1)
=> góc CAH = góc HBD
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(a=bk;c=dk\)
Suy ra :
\(\frac{a^{2019}+12b^{2019}}{c^{2019}+12d^{2019}}=\frac{\left(bk\right)^{2019}+12b^{2019}}{\left(dk\right)^{2019}+12d^{2019}}=\frac{b^{2019}.k^{2019}+12b^{2019}}{d^{2019}.k^{2019}+12d^{2019}}=\frac{b^{2019}\left(k^{2019}+12\right)}{d^{2019}\left(k^{2019}+12\right)}\)
\(\frac{b^{2019}}{k^{2019}}\left(1\right)\)
\(\text{⋆}\frac{\left(12a-11b\right)^{2019}}{\left(12c-11d\right)^{2019}}=\frac{\left(12bk-11b\right)^{2019}}{\left(12dk-11d\right)^{2019}}=\frac{\left[b\left(12k-11b\right)\right]^{2019}}{\left[b\left(12k-11d\right)\right]}=\frac{b^{2019}.\left(12k-11\right)^{2019}}{d^{2019}.\left(12k-11\right)^{2019}}\)
\(=\frac{b^{2019}}{d^{2019}}\)
Từ (1) và (2) suy ra : \(\frac{a^{2019}+12b^{2019}}{c^{2019}+12d^{2019}}=\frac{\left(12a-11b\right)^{2019}}{\left(12c-11d\right)^{2019}}\left(đpcm\right)\)
\(BC^{2017}=BC^2.BC^{2015}=\left(AB^2+AC^2\right).BC^{2015}\)
\(=AB^2.BC^{2015}+AC^2.BC^{2015}>AB^2.AB^{2015}+AC^2.AC^{2015}=AB^{2017}+AC^{2017}\)
a) Xét tam giác vuông ADB và tam giác vuông ACE có:
Góc A chung
AB = AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\) (Cạnh huyền - góc nhọn)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)
Xét tam giác vuông AEH và tam giác vuông ADH có:
Cạnh AH chung
AE = AD (cmt)
\(\Rightarrow\Delta AEH=\Delta ADH\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HE=HD\)
c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.
Lại có AM cũng là đường cao nên AM đi qua H.
d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)
Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)
Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)
\(=3EC^2+2EA^2+BC^2\).
Áp dụng định ly Pitago trong các tam giác vuông ACK;AKI;BKI ta có :
AC^2 = AK^2-CK^2
AK^2 = AI^2+IK^2
IK^2 = BK^2-IB^2
=> AC^2 = AI^2+IK^2-CK^2 = AI^2+BK^2-IB^2-CK^2 = AI^2-IB^2 ( vì BK=CK => BK^2 = CK^2 )
=> ĐPCM
Tk mk nha
-tự vẽ hình
a) Áp dụng định lý pytago vào tam giác vuông ABH, ta có:
BH2+AH2=AB2
=> AH2=AB2-BH2(1)
Áp dụng định lý pytago vào tam giác vuông AHC ta có:
AH2+HC2=AC2
=> AH2=AC2-HC2(2)
Từ (1) và (2) => AB2-BH2=AC2-HC2 => AB2+HC2=AC2+BH2(chuyển vế đổi dấu)
b) Trên đoạn thẳng AB lấy điểm E => AE<AB, trên đoạn thẳng AC lấy điểm F => AF<AC
Áp dụng định lý pytago vào tam giác vuông EAF ta có:
AE2+AF2=EF2
Áp dụng định lý pytago vào tam giác vuông ABC ta có:
AB2+AC2=BC2
Mà AE<AB(cmt) => AE2<AB2, AF<AC(cmt) => AF2<AC2
=>AE2+AF2<AB2+AC2 hay EF2<BC2=> EF<BC
c) nghĩ chưa/ko ra >:
-bn nào giỏi giải hộ =.=