Cho tam giác ABC vuông tại A. Chứng minh rằng: AB2019 +AC2019 <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

a, xét tam giác ABH và tam giác DBH có : HB chung

góc AHB = góc DHB = 90 do ...

AH = HD (gt)

=> tam giác AHB = tam giác DHB (c-g-c)

b, tam giác AHB = tam giác DHB (Câu a )

=> góc DBH = gosc HBA (Đn)    (1)

tam giác  AHB vuông tại H do ...

=> góc CBA = 90 - góc HAB 

góc CAH = 90 - góc HAB 

=> góc CAH = góc HBA  và (1)

=> góc CAH = góc HBD

25 tháng 12 2021

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(a=bk;c=dk\)

Suy ra :

\(\frac{a^{2019}+12b^{2019}}{c^{2019}+12d^{2019}}=\frac{\left(bk\right)^{2019}+12b^{2019}}{\left(dk\right)^{2019}+12d^{2019}}=\frac{b^{2019}.k^{2019}+12b^{2019}}{d^{2019}.k^{2019}+12d^{2019}}=\frac{b^{2019}\left(k^{2019}+12\right)}{d^{2019}\left(k^{2019}+12\right)}\)

\(\frac{b^{2019}}{k^{2019}}\left(1\right)\)

\(\text{⋆}\frac{\left(12a-11b\right)^{2019}}{\left(12c-11d\right)^{2019}}=\frac{\left(12bk-11b\right)^{2019}}{\left(12dk-11d\right)^{2019}}=\frac{\left[b\left(12k-11b\right)\right]^{2019}}{\left[b\left(12k-11d\right)\right]}=\frac{b^{2019}.\left(12k-11\right)^{2019}}{d^{2019}.\left(12k-11\right)^{2019}}\)

\(=\frac{b^{2019}}{d^{2019}}\)

Từ (1) và (2) suy ra : \(\frac{a^{2019}+12b^{2019}}{c^{2019}+12d^{2019}}=\frac{\left(12a-11b\right)^{2019}}{\left(12c-11d\right)^{2019}}\left(đpcm\right)\)

DD
13 tháng 5 2021

\(BC^{2017}=BC^2.BC^{2015}=\left(AB^2+AC^2\right).BC^{2015}\)

\(=AB^2.BC^{2015}+AC^2.BC^{2015}>AB^2.AB^{2015}+AC^2.AC^{2015}=AB^{2017}+AC^{2017}\)

8 tháng 4 2018

help me

9 tháng 4 2018

a) Xét tam giác vuông ADB và tam giác vuông ACE có:

Góc A chung

AB = AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)   (Cạnh huyền - góc nhọn)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)

Xét tam giác vuông AEH và tam giác vuông ADH có:

Cạnh AH chung

AE = AD (cmt)

\(\Rightarrow\Delta AEH=\Delta ADH\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HE=HD\)

c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.

Lại có AM cũng là đường cao nên AM đi qua H.

d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:

\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)   

Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)

Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)

\(=3EC^2+2EA^2+BC^2\).

9 tháng 2 2018

Áp dụng định ly Pitago trong các tam giác vuông ACK;AKI;BKI ta có :

AC^2 = AK^2-CK^2

AK^2 = AI^2+IK^2

IK^2 = BK^2-IB^2

=> AC^2 = AI^2+IK^2-CK^2 = AI^2+BK^2-IB^2-CK^2 = AI^2-IB^2 ( vì BK=CK => BK^2 = CK^2 )

=> ĐPCM

Tk mk nha

3 tháng 2 2019

-tự vẽ hình

a) Áp dụng định lý pytago vào tam giác vuông ABH, ta có:

BH2+AH2=AB2

=> AH2=AB2-BH2(1)

Áp dụng định lý pytago vào tam giác vuông AHC ta có: 

AH2+HC2=AC2

=> AH2=AC2-HC2(2)

Từ (1) và (2) => AB2-BH2=AC2-HC2 => AB2+HC2=AC2+BH2(chuyển vế đổi dấu)

b) Trên đoạn thẳng AB lấy điểm E => AE<AB, trên đoạn thẳng AC lấy điểm F => AF<AC

Áp dụng định lý pytago vào tam giác vuông EAF ta có: 

AE2+AF2=EF2

Áp dụng định lý pytago vào tam giác vuông ABC ta có: 

AB2+AC2=BC2

Mà AE<AB(cmt) => AE2<AB2, AF<AC(cmt) => AF2<AC2

=>AE2+AF2<AB2+AC2 hay EF2<BC2=> EF<BC

c) nghĩ chưa/ko ra >: 

-bn nào giỏi giải hộ =.=