K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2023

a.

\(BC^{2} = AB^{2} + AC^{2}\)

⇔ \(BC^{2} = 6^{2} + 8^{2}\)

⇔ \(BC = 10 cm\)

b. 

\(\dfrac{1}{AH^{2}} = \dfrac{1}{AB^{2}} + \dfrac{1}{AC^{2}}\)

⇔ \(\dfrac{1}{AH^{2}} = \dfrac{1}{6^{2}} + \dfrac{1}{8^{2}}\)

⇔ \(AH = 4,8 cm\)

30 tháng 10 2023

 

 

 BC=10

 AH=4,8cm

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

15 tháng 11 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB=BC/2

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)

Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)

c: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABC}\)

\(\widehat{AFE}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>FE vuông góc AM tại K

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HA^2=AE\cdot AB\)

=>\(AE\cdot6=4,8^2\)

=>\(AE=3,84\left(cm\right)\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)

Xét ΔAEF vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)

=>AK=2,304(cm)

22 tháng 8 2023

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

13 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

b: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

=>MN=AH

mà AH=4,8cm

nên MN=4,8cm

13 tháng 12 2023

a) Để tính BC, ta sử dụng định lý Pythagoras trong tam giác vuông ABC:

BC^2 = AB^2 + AC^2

BC^2 = 6^2 + 8^2

BC^2 = 36 + 64

BC^2 = 100

BC = √100

BC = 10 cm

 

Để tính AH, ta sử dụng công thức diện tích của tam giác:

S = 1/2 * AB * AH

S = 1/2 * 6 * AH

S = 3AH

 

Vì tam giác ABC là tam giác vuông, nên diện tích tam giác ABC cũng có thể tính bằng cách sử dụng công thức diện tích tam giác vuông:

S = 1/2 * AB * AC

S = 1/2 * 6 * 8

S = 24

 

Vậy, ta có phương trình:

3AH = 24

AH = 8 cm

 

b) Để tính MN, ta sử dụng tỷ lệ giữa các đoạn thẳng trong tam giác đồng dạng. Ta có:

MN/BC = HM/AB = HN/AC

 

Vì HM và HN là đường cao của tam giác ABC, nên ta có:

HM = AH = 8 cm

HN = AH = 8 cm

 

Vậy, ta có:

MN/10 = 8/6

MN = (8/6) * 10

MN = 80/6

MN ≈ 13.33 cm

16 tháng 12 2021

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

29 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=8^2+6^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

b: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(sinC=\dfrac{8}{10}=\dfrac{4}{5}\)

Xét ΔABC vuông tại A có \(\widehat{B}+\widehat{C}=90^0\)

=>\(cosB=sinC=\dfrac{4}{5}\)

c: Ta có: ΔABC vuông tại A

=>\(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot BC=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{8^2}{10}=6,4\left(cm\right)\\CH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)

10 tháng 1 2022

??

BC=10cm

AH=4,8cm

BH=3,6cm