K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

b: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

=>MN=AH

mà AH=4,8cm

nên MN=4,8cm

13 tháng 12 2023

a) Để tính BC, ta sử dụng định lý Pythagoras trong tam giác vuông ABC:

BC^2 = AB^2 + AC^2

BC^2 = 6^2 + 8^2

BC^2 = 36 + 64

BC^2 = 100

BC = √100

BC = 10 cm

 

Để tính AH, ta sử dụng công thức diện tích của tam giác:

S = 1/2 * AB * AH

S = 1/2 * 6 * AH

S = 3AH

 

Vì tam giác ABC là tam giác vuông, nên diện tích tam giác ABC cũng có thể tính bằng cách sử dụng công thức diện tích tam giác vuông:

S = 1/2 * AB * AC

S = 1/2 * 6 * 8

S = 24

 

Vậy, ta có phương trình:

3AH = 24

AH = 8 cm

 

b) Để tính MN, ta sử dụng tỷ lệ giữa các đoạn thẳng trong tam giác đồng dạng. Ta có:

MN/BC = HM/AB = HN/AC

 

Vì HM và HN là đường cao của tam giác ABC, nên ta có:

HM = AH = 8 cm

HN = AH = 8 cm

 

Vậy, ta có:

MN/10 = 8/6

MN = (8/6) * 10

MN = 80/6

MN ≈ 13.33 cm

a: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

c:

Xét tứ giác ANHM có

góc ANH=góc AMH=góc MAN=90 độ

=>ANHM là hình chữ nhật

AD vuông góc MN

=>góc DAC+góc ANM=90 độ

=>góc DAC+góc AHM=90 độ

=>góc DAC+góc ABC=90 độ

=>góc DAC=góc DCA

=>DA=DC 

góc DAC+góc DAB=90 độ

góc DCA+góc DBA=90 độ

mà góc DAC=góc DCA

nên góc DAB=góc DBA

=>DA=DB

=>DB=DC

=>D là trung điểm của BC

22 tháng 7 2018

a, \(\Delta ABC,\hat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

\(\Leftrightarrow10^2=6^2+AC^2\)

\(\Leftrightarrow AC^2=64\)

\(\Leftrightarrow AC=8\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:

\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)

Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)

Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)

22 tháng 7 2018

2 câu kia mình nghĩ sau

16 tháng 7 2021

tam giác ABC vuông tại A nên áp dụng Py-ta-go 

\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

b) Kẻ HE,HF vuông góc với AB,AC chớ,chứ ko có điểm I

Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật

\(\Rightarrow EF=AH\)

tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow EA.EB=EH^2\)

tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow FA.FC=HF^2\Rightarrow EA.EB+FA.FC=EH^2+FH^2=EF^2=AH^2\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC\Rightarrow HB.HC=EA.EB+FA.FC\)

 

22 tháng 11 2021

\(a,\text{Áp dụng PTG:}BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \text{Áp dụng HTL:}\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\\ b,\text{Áp dụng HTL:}\left\{{}\begin{matrix}AM\cdot AB=AH^2\\AN\cdot AC=AH^2\end{matrix}\right.\\ \Rightarrow AM\cdot AB=AN\cdot AC\)

22 tháng 11 2021

s cái font chữ nhìn lạ dzậy =)) ???

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

XétΔABC vuông tại A có \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

=>\(\widehat{B}\simeq53^0\)

b: \(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)

\(HB=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)

HC=BC-HB=3,2(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔHCA vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

d: Xét tứgiác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)

nên AMHN là tứ giác nội tiếp

Xét (AH/2) có

\(\widehat{ANM}\) là góc nội tiếp chắn cung AM

\(\widehat{AHM}\) là góc nội tiếp chắn cung AM

DO đó: \(\widehat{ANM}=\widehat{AHM}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AE là đường trung tuyến

nên AE=CE
=>\(\widehat{EAC}=\widehat{C}\)

\(\widehat{ANM}+\widehat{EAC}=\widehat{B}+\widehat{C}=90^0\)

=>AE\(\perp\)MN

2 tháng 9 2017

tự vẽ hình nha bn

a. Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)(Theo định lí Pytago, tam giác ABC vuông tại A)

b. Ta có: \(\frac{BH}{CH}=\frac{3}{4}\)

\(\Leftrightarrow\frac{BH+CH}{CH}=\frac{3}{4}+1\)

\(\Leftrightarrow\frac{BC}{CH}=\frac{7}{4}\)\(\Leftrightarrow\frac{5}{CH}=\frac{7}{4}\)\(\Leftrightarrow CH=\frac{5.4}{7}=\frac{20}{7}\)

\(\Rightarrow BH=5-\frac{20}{7}=\frac{15}{7}\)

3 tháng 9 2017

c,d bạn giải giùm mình được không

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

30 tháng 12 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

b: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

c:

Sửa đề: AP là phân giác của góc BAC

Xét tứ giác AEPF có

\(\widehat{AEP}=\widehat{AFP}=\widehat{FAE}=90^0\)

=>AEPF là hình chữ nhật

Hình chữ nhật AEPF có AP là phân giác của góc FAE

nên AEPF là hình vuông