Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét ΔABD và ΔAMD có:
góc BAD= góc MAD(AD là tia phân giác )
AD chung
góc ABD = góc AMD(=90độ) (ΔABC ⊥B; DM⊥AC)
⇒ΔABD=ΔAMD(ch-cgv)
b)Có:AB=AM (ΔABD=ΔAMD)
⇒A ϵ đường trung trực của BC (t/c đường trung trực)(1)
Lại có : BD=MD(ΔABD=ΔAMD)
⇒D ϵ đường trung trực BM(t/c đường trung trực) (2)
Từ (1) và(2)⇒AD là đường trung trực BM
c)Xét ΔBNDvàΔMCD có:
góc DBN =góc DMC (90độ)(ΔABC ⊥B; DM⊥AC)
BD=MD(ΔABD=ΔAMD)
góc BDN=MDC(2 góc dối đỉnh)
⇒ ΔBND=ΔMCD(g.c.g)
⇒BN=MC(2 cạnh tương ứng)
Có: AB+BN=AN và AM+MC=AC
Mà AB=AM(ΔABD=ΔAMD) và BN=MC (CMT)
⇒AN =AC
⇒ΔANC cân
Lại có góc A =60 độ
⇒ΔANC đều
A N B M I C D (Hình vẽ minh họa)
(hình vẽ minh họa)
d)CÓ: AD là tia phân giác góc BAC
⇒góc BAD= góc CAD=1/2 góc BAC=1/2 . 60độ=30 độ
⇒góc BAI=30độ
Lại có: góc NBD=90độ(ΔABC⊥B)
⇒BI<ND(quan hệ giữa góc và cạnh đối diện)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
=>ΔADE\(\sim\)ΔACB
b, Ta có: SABC = 1/2.AB.AC = 1/2.9.12 = 54 (cm2)
SADC = 1/2.DE.AC = 1/2.12.36/7 = 216/7 (cm^2)
=> SABD = SABC - SADC = 54 - 216/7 = 162/7 (cm2)
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABC}\) chung
Do đó; ΔAHB\(\sim\)ΔCAB
Suy ra: AB/CB=HB/AB
hay \(AB^2=HB\cdot BC\)
b: BC=25cm
BH=225:25=9(cm)
CH=25-9=16(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)