K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2023

a)xét ΔABD và ΔAMD có:

     góc BAD= góc MAD(AD là tia phân giác )

       AD chung

      góc ABD = góc AMD(=90độ) (ΔABC ⊥B; DM⊥AC)

    ⇒ΔABD=ΔAMD(ch-cgv)

b)Có:AB=AM (ΔABD=ΔAMD)

⇒A ϵ đường trung trực của BC (t/c đường trung trực)(1)

 Lại có : BD=MD(ΔABD=ΔAMD)  

 ⇒D ϵ đường trung trực BM(t/c đường trung trực) (2)

Từ (1) và(2)⇒AD là đường trung trực BM

c)Xét ΔBNDvàΔMCD có:

    góc DBN =góc DMC (90độ)(ΔABC ⊥B; DM⊥AC)

   BD=MD(ΔABD=ΔAMD) 

   góc BDN=MDC(2 góc dối đỉnh)

⇒ ΔBND=ΔMCD(g.c.g)

⇒BN=MC(2 cạnh tương ứng)

Có: AB+BN=AN và AM+MC=AC

Mà  AB=AM(ΔABD=ΔAMD) và BN=MC (CMT)

⇒AN =AC

⇒ΔANC cân

Lại có góc A =60 độ

⇒ΔANC đều

A N B M I C D (Hình vẽ minh họa)

(hình vẽ minh họa)

28 tháng 6 2023

d)CÓ: AD là tia phân giác góc BAC

⇒góc BAD= góc CAD=1/2 góc BAC=1/2 . 60độ=30 độ

⇒góc BAI=30độ

Lại có: góc NBD=90độ(ΔABC⊥B)

⇒BI<ND(quan hệ giữa góc và cạnh đối diện)

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

b, Ta có: SABC = 1/2.AB.AC = 1/2.9.12 = 54 (cm2)
SADC = 1/2.DE.AC = 1/2.12.36/7 = 216/7 (cm^2)
=> SABD = SABC - SADC = 54 - 216/7 = 162/7 (cm2)

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABC}\) chung

Do đó; ΔAHB\(\sim\)ΔCAB

Suy ra: AB/CB=HB/AB

hay \(AB^2=HB\cdot BC\)

b: BC=25cm

BH=225:25=9(cm)

CH=25-9=16(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)